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Abstract

We investigate semantics for classical proof based on tipgese calculus. We show that
the propositional connectives are not quite well-behavexhfa traditional categorical per-

spective, and give a more refined, but necessarily comptedysis of how connectives

may be characterised abstractly. Finally we explain theseguences of insisting on more
familiar categorical behaviour.
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1 Introduction

In this paper we describe the shape of a semantics for cégsicof in accord with
Gentzen’s sequent calculus. For constructive proof we the/familiar correspondence
between deductions in minimal logic and terms of a typed @ertalculus. Deductions
in minimal logic (as in most constructive systems) reduca tmique normal form, and
around 1970 Per Martin-Lof (see [18]) suggested using lgguzt normal forms as
the identity criterion for proof objects in his constru&iVype Theories: normal forms
serve as the semantics of proof. Bi-normal forms for typed lambda calculus give
maps in a free cartesian closed category; so we get a whaje dicategorical models
of constructive proof. This is the circle of connectionsreunding the Curry-Howard
isomorphism. We seek analogues of these ideas for clagsmaifl. There are a number
of immediate problems.

The established term languages for classical proofs dnereimcompatible with the
symmetries apparent in the sequent calculus (Parigot @6t reconciling themselves
to that symmetry at least make evaluation deterministi©@hos et al [5,21]). Either
way the ideas, which derive from analyses of continuatinops@gramming (Griffin [9],
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Murthy [15]) can be thought of as reducing classical proat@astructive proof via a
double negation translation. (A categorical semanticsetscdbed in Selinger [23].)
There are term calculi associated directly with the sequaltulus (Urban [25]) but
it is not clear how to formulate mathematically appealingecia for identity of such

terms. What we do here suggests many commutative converiorJrban’s terms,

but the matter is not straightforward. Also since redudioh classical proofs in se-
quent calculus form are highly non-deterministic, norneairis do not readily provide
a criterion for identity of such proofs.

There are problems at the level of semantics. There are méesodegenerate models
giving invariants of proofs ([7] and [12]) and we know how tonstruct some more
general models. But all that is parasitic on experience Wittear Logic. We lack
convincing examples of models sensitive to the issues orhwivie focus here. The
connection with established work on polarised logic, miagboth call-by-name and
call-by-value reduction strategies ([23], [26], [10]),atso problematic. Even if one
considers a system (as in [5]) that mixes the two and corsi@éthe normal forms
reachable from representations in it of a proof, one sti#loot exhaust all normal
forms to which a proof in the sequent calculus can reducef(sesxample [24, Page
127]). Moreover, there is no easy way to extract models fosgstem from categorical
models in the style of Selinger.

The project on which we report here was motivated by Urbaingng normalisation
result ([25] and [24]) for a formulation of classical probf[11], one of us then outlined
a proposal for a semantics. Unfortunately, the axioms of ghtail full naturality of
logical operations contrary to the clear intentions of tapgy. Here we make that good
and analyse the issue. Since then, another of us suggesi®®)] ibasing analysis of
classical proof on a simple (box-free) notion of proof netcls systems have implicit
naturalities built in so this is in contrast with [11]. In [6lihrmann and Pym analyse
Robinson’s proposal further. They give categorical corators, add)-equalities to the
implicit naturalities and succeed in axiomatizing redocti The interaction between
the equalities and reduction presents computational difies, so this is a substantial
achievement. The proof net model is better dynamically tieaned, and suggests a
notion of model of classical proof simpler than that anallybere. We give an exact
account of the relation between the two, and show in whates#res Filhrmann-Pym
equalities identify proofs which differ on a sequent calsuleading.

The question of what are the sensible criteria for identftproofs is a delicate one.
The referee rightly stressed that this is true also of canste proofs, the difference
between the classical and constructive case being thaeitatter we have a robust
semantic notion which is generally agreed on. We do not éxjpet in the classical
case. At the very least different systems of proof can be @rpeo lead to different
semantics. A compelling example is the recent work of Laimasnd Strassburger [14].



2 Modelling classical proofs
2.1 Sequent Calculus and Polycategories

It is a familiar idea that what the sequent calculus provide®t a collection of ideal
proofs-in-themselves, but something more like instrueiéor building proofs. With
this in mind we formulate design criteria for our semantics.

(1) Associativity. Cut should be an associative operatiopm@ofs.

(2) Identities. We require that there be a canonical axiahar{ity proof)A - A for
all A, and that it should act as an identity under cut.

(3) de Morgan Duality. We take a strict duality on proposis@nd proofs.

Of these the first two seem compelling while the third coulddgarded as a matter
of convenience. While we have not written out the detailss ibur impression that
the basics of our analysis would not need to change if we didake full de Morgan
duality.

2.1.1 Polycategories

The general category-like structure which encapsulaeéinst two criteria is Szabo’s
notion of a polycategory (Szabo [22]). Rather than beingnitefe, in the way that the

notion of an ordinary category is definitive, there are anyhber of variants adapted to
particular contexts (recent treatments include [4] andl [2]

Definition 2.1. A symmetric polycategor§henceforth just polycategor{ consists of

e A collectionobP of objects ofP; and for each pair of finite sequendesind A of
objects, a collectioP(I'; A) of (poly)maps froml" to A.

e For each re-ordering of the sequert® produce the sequenté an isomorphism
from P(I"; A) to P(I'; A), functorial in its action, and dually fah.

e Anidentityid4 € P(A; A) for each objectd; and a composition

P(T; A, A) x P(A,TL ) — P(T, 1L A, %) .

for eachl’, A, A, II, X2, coherent with re-ordering.
This data should satisfy identity and associativity lawkich we do not give here.

One thinks of P(I'; A) as the collection of abstract proofs bf - A. We write a
polymapf € P(T'; A)asf : I' — A. We picture it as a box

ri/Ja

with input wiresI” and output wires\. We have explicit identitiegl 4. Composition
corresponds to cut: in particular maps are plugged togetharsingle object, not an
entire sequence. We adopt a lazy algebraic notation for osmpn. Forf : I' — A A



andg : A, 11 — X we write the composite in the diagrammatic orderfag: I', I —
A, Y. We do not introduce a formal notation for composing manymalps, but note
that such compositions are determined by trees. Howeveruseful to have a little
home-spun notation for simple cases. We write

{f.9}:{h, k}

to indicate compositions involving the four multimapsg, » andk, where thef and

g come before thé andk. For examplef andg might plug intoh andg also intok.
(There are essentially four distinct cases.) It will alwagspossible to determine what
we mean from the context.

2.1.2 x-polycategories

Our third design criterion amounts to the simplifying demisto treat negation implic-
itly. In proof theoretic terms that is to take a formulatioittwan involutory negation

(=) :ip—p",p" —p

on atomic formulae, and extend it to all formulae by setting

T =1 1*=T,
(ANB)*=B*VA* (AVB)"=B*NA*,

that is, more or less, by de Morgan duality. The cyclic chaterder may be familiar

from non-commutative linear logic (Ruet [20]). It is notistly necessary here, but
serves as there to preserve a strict duality at the levelanffpr Exact duality permits a
purely one-sided sequent calculus as in Girard [8], but veéeprto keep both sides in
play at the semantic level. Abstractly we get-polycategory

Definition 2.2. A symmetrick-polycategory(henceforth jusk-polycategory P con-
sists of a polycategor equipped with an involutory negatian-)* on objects to-
gether with for each’, A, A, an isomorphisnP(I'; A, A) = P(A*,T'; A) coherent
with re-ordering and composition.

With this in place one should not take the talk of input andoatiabove too literally:

according to the--polycategorical perspective an input wire of kidds effectively an

output wire of typeA*. We shall not need to pay much attention to the* operation

which takes polymap§ — A, B to polymapsB*, ' — A. However we shall need
notation for variants of the identityl , : A — A. We write these as

ing:—— A" A and evy: A A" — —.

These can be pictured as follows.
A* A*

Dl



We note that the operation taking a polymap I' — A, Bto f* : B*,' — A say
is implemented by composition: one hAs= f;in. Similarly for the operation taking
g: Al = Atog": ' = A, A*, one hag/* = ev; g. In particular we have equations
of the formin; ev = id as in the following picture.

g -

The notion of ax-polycategory satisfies our design criteria and so givessa step
towards a definition of a model for classical proof. It deses a notion of proof with
associative cut, identities and strict duality, but withtmgical operations and without
structural rules. For classical logic we need to add thegsibional connectives and the
structural rules of weakening and contraction. We treatdtie/o in turn.

2.2 Logical rules

We consider how rules of inference for the classical connestshould be treated.
We first describe the operations together with the prope(haturality, commutative
conversions) which we regard as implicit; and then we carsichich proof diagrams
should further be identified as a result of meaning presgmeductions.

2.2.1 Logical operations

As logical operators we consider only, A, and their de Morgan duald,, V. Negation
is defined implicitly by de Morgan duality, and other logicglerators in terms of those
given.

We recall the rules fon andT in sequent calculus form.

ABTEA  DEAC HEAD LA o
arBTrFA Taraarcap ™M FTRa Tt EF TR

We recast these rules in terms:epolycategories. So we require operations

P(A, B, T;A) — P(AANB,T;A) : h—h,
P, A, C) x P(IA, D) — PI,IL;AANCAD) : (f,9)— f-g,
P(;A) — P(T,TA) : h— bt
*€P(;T),

encapsulating the-L, A-R, T-L and T-R rules. This imprecise notation will serve for

I To avoid misunderstanding we stress that there is no cotiposif the formev;id. There is
nothing to plug into.



this paper. We can picture the rules thus.
T
AN BRy ) ;f@m Pi A

A notion of duality is built into the notion of-polycategory. So given what we have
said about the operatioisandA, there is no need for substantial discussion of the de
Morgan dualsl. andV. We may as well overload the notation and take operations

P(I;A,C,D) — P(I';A,CVD) : h—h
P(A,T;A) x P(B,II;A) — P(AV B, T, ITI; A)A) : (f,9)— f-9g
P(T;A) — P A, L) : h— bt
* € P(L;)

each being the dual of the corresponding operation above.

2.2.2 Naturality

Composition in ax-polycategory corresponds to Cut, so the general natyredindi-
tions implicit in proof nets are clear. Two involve a localevgtion on just one proof,
and are compelling. In our imprecise notation, these arelbsfs.

e Naturality for A-L. Supposeh : A, B — E. Then forw : E — E’ we have the
naturality condition
h;w = h;w .
e Naturality for T-L. Supposé: : A — B. Thenforv : B — B’ we have the naturality
condition
htiv = (h;v)t.

(We omit irrelevant contexts.) By duality that gives us malty as follows
w;h =w;h and v;ht = (v;h)7T,

in the right rules forv and_L. We adopt these naturality equations.

On the other hand we shall argue against adopting the fallgpwondition.

e Naturality for A-R. Supposef : A — C, g : B — D. Then foru : A — A and
v : B — B we have the naturality equation

{u,v}; (f-9) = (w; f) - (v; g)

where on the right we have the obvious compositiorf efy : A, B — C' A D with
u andw.



(Note that there is no context in-R and so no corresponding naturality.) The problem
which we will come to in 4.3 is that taken together with contran and weakening
this naturality equation identifies proofs with essenyidifferent collections of normal
forms.

However there are cases where that cannot happen; and gele@seasonable to allow
some maps andv to slip harmlessly past the imagined box aroyrid ¢). After all
we inevitably have

{id,id}; (f-g) = f- 9= (id; f) - (id; g) .

So we adopt a restricted form of an idea from [11]. We call mapsfor which both
the A equations

w; (f-9)=(u; f)-g, v;(f-g)=(f) (v;g), andsofu,v}; (f-g) = (u; f) - (v;9)

and the dual equations for hold linear. (This definition does make sense!) We have
the following.

Additional assumption Linear maps are closed under the logical operations intro-
duced above.

In view of the other naturalities, the essential assumpBotat « is linear and that
linear maps are closed under- —.

2.2.3 Commutation: logical rules

The polycategorical perspective supports equalitiesngriom the commuting con-
versions in sequent calculus. We sketch, again using oureicige notation, the basic
phenomena for the binary operators.

First given proofs
fiTy = ALAB, g:Ty— Ay C, h:T3— A3, D,
we have (perhaps modulo exchange) an equality of the form
(f-g)-h=(f-h)-g: T >N ANC,BAD

(with T', A, the sum of thd"; and A; respectively). Of course there are other versions
obtained by duality

Secondly given proofs
f:A7BaF1HA1aca g:FQHAQaDa
we have an equality of form

f-9g=T-9:ANBT - ACAD



(with T', A, the sum of thd’; and A; respectively). As before there are variants by
duality.

Finally from a proof
f+A BT —-ACD,
we can apply the operatidn) in two different orders getting an equality of the form

Ff=Ff:AANB T - A,CVD.

There are variants by duality. The picture is as follows.

A/\B..> @C\/D

So far we have only considered the binary operators. Therenany similar examples
involving also the rules forr which we merely list.

frog=(f-9f, T =7, ftr=rtt.

(The final equation reflects the two different orders of apyules to obtain a proof
of T,I' - A, 1.) We are happy to adopt all these equalities.

2.2.4 Reduction

Most of our equalities on proofs keep track of inessentiaritengs, but in itself that
is dull. The critical equalities take account of meaningspreing reductions. We take
these to arise from logical cuts.

Supposethaf : A+ C,g: BF Dandk : C,D - E are proofs. (Again we suppress
further contexts.) We can form the proof

A ¢ Br9p CDHE
ABFCAD CADFE
ABFE

CUT

which reduces to
ArfCc BHID C,DFHFE

ABFE

CUTs

where by associativity we write the two Cuts together. Thwega simple equation for
our polycategory:

(f-9sik={f.ghk.
Similarly suppose that : A+ B is a proof. We can form the proof

A+ B
T T,AF B
AF B

cuT

and this reduces outright to
AH B.



This gives another equation in our polycategory:
s fr=1r.

These equations (and their duals) constitb&ereduction principle for logical cut$-or
us the reduction of logical cuts is meaning preserving.

2.3 Structural Rules

2.3.1 Implementation

The structural rule of Exchange is implicit in our notion gframetricx-polycategory,
but we need to consider Weakening and Contraction.
FEA rEA AATEA I'-AB,B

W-L W-R

ATEA . TFAB . Arra CL . TtrAaB SR

Naturalities implicit in proof nets in tandem with our redioo principle for logical
cuts suggest a nice way to represent these inquolycategory.

We treat contraction first. For all, ‘generic’ instances of contraction give maps
A— ANAandm: AV A — A arising from the proofs

AbA AFA, o AFA AFA
AAFANA AVAFE A A
Arana b Avara CR

V-L

These are obviously constructed as de Morgan duals, so wmadbat they are inter-
changed by the duality in owpolycategory, that is,

(dA)*:mA*, (mA>*:dA*

Itis consonant with earlier assumptions to suppose thatanemplement the C-L rule
by composition with its ‘generic’ instancé that is, we formf : AN A" = A and
then compose withd to gived; f : A,I' = A as in the following picture.

A. ANA @4

Duallym : AV A — Aimplements contraction on the right: contractingB — D, D
on the right isg; m.

Similarly we have a way to implement weakening. In our polggary we should have
mapst : A — T andu : L — A arising from the proofs

TET gn Ir e
AFT Y]

Again these are de Morgan duals and should be interchangeddbyy:

(tA)*:uA*, (UA)*:tA*.



Now suppose that we have a prgbt I' - A, and we wish to weaken on the left. We
form f*: T,T' = A and compose withto givet; f* : A, = A. Thust can be used
to implement weakening on the left. Duatiycan be used to implement weakening on
the right: in that case is weakened tg™; u.

2.3.2 Commuting conversions

Implementing rules by composition with generic instan@®$ care of naturality is-
sues; and some commuting conversions are an immediatequaarsze of the associa-
tivity of composition in a polycategory. However there arermsuch.

We expect C-L to enjoy the same commuting possibilitiesds This requires equa-
tions of the form

(& f)-g=d;(f-9), df=df, dft=(d/[f)".

(In the second equation, the typing should give a commutimyersion ind; f, not a
logical cut.) Similar considerations for W-L and-L give the equations

G -g=t9 ., tf=tf, tff=LHT.

(In the last equation the typing should give a commuting eosien int¢; f, not a
logical cut.) We take all these.

2.3.3 Correctness equations

There are further issues to consider arising from the datisiimplement the structural
rules. We implement contraction via composition withA — AAAandm : AVA —

A. Butd andm are themselves produced by contractions on probfsid, : A, A —
ANAandid,-idy : AVA — A, Arespectively. So we need to make these agree. This
gives us equations:

d;(ids -idg) =d, (ida-ida);m=m.

Similarly, we implement weakening via composition withA — T andu : 1L — A.
But again these are themselves produced by weakening proofé—) — T and
*: L — (—) respectively. Making these agree gives us equations

txt=t, «Tu=u.

There is a further delicate point which we mention here. Givé-/ A there are two
distinct ways to introducé on the left:

LA o TA

TTrA 'Y FTrra WL

In our notation these aré™ andt; f* respectively: they are not taken as equal. This

decision arises from an austere view of cut reductions whdéast rule is structural. In
this paper we make no equality assumptions in such circumosta

10



2.3.4 Structural congruence

In the interests of simplicity, we subject the structurd¢suto structural congruence in
a sense popular in concurrency theory.

Consider the process of Weakening only immediately to Gaitr

ATFA
AATFA
ATFA

That seems as pointless a detour as a logical Cut, and we ialowe deleted. Given
the analysis above we can express this by the equation:

di () = [

Similarly it seems willful to distinguish between the vargways in which a series of
contractions may be performed. This provides the seemipglytless equation

d; (d; f) = d; (d; f) ,

which properly indexed is a version of associativity. Fipdhere is an issue relating
contraction to exchange: one can exchange before comtgaintio copies ofA. One
may as well identify the proofs. Write-)* to indicate a use of symmetry. Then modulo
elimination of logical cuts we can express this by

diidy -ids =d: A— ANA.

Thus structural congruence gives us identity, associgtand commutativity condi-
tions. We assume these in the interests of mathematicarateg

3 Categorical formulation

In section 2 we surveyed all the structure ofrtpolycategory needed to model classical
proofs, and we gave the equations which we think should Adlc gives us a genuine
though unwieldy notion of model. We shall not spell it outstead we shall extract
from thex-polycategorical formulation structure on its underlyicegegory giving an
equivalent notion of categorical model.

Before we get down to work, we note that the involutary neme(i-)* extends to maps
as we have (for example) natural isomorphisms

C(A;B) =2C(—; A", B)=(C(B"; A").

It is easy to see that

Proposition 3.1. The operatior{—)* : C®” — C is a strict functorial self-duality on our
categoryC.

11



The duality more or less halves the work which we now have t&deenever we have
structure we shall have its dual.

3.1 Categorical Preliminaries

We start by introducing some preliminary notions. We coesthtegories equipped
with a special class af;q of idempotents, which we shall cdlhear idempotentsin
our application these will be idempotents (mapgith ¢; e = ¢) which are linear in the
sense of 2.2.2. For the moment we need assume nothing bdyembtious require-
ment that every identity is in the class. We call such dajaarded category

Definition 3.2. A guarded functo’ : C — D between guarded categories consists of
the usual data for a functor such tifamaps linear idempotents to linear idempotents;
and whenever ande’ are linear idempotents, then

F(e); F(f); F(g); F(e') = F(e); F(f;9); F(€)

We say that a guarded functéris domain absorbingvhen F'(e); F/(f) = F(e; f) for
linear idempotents; it is codomain absorbingvhen F'(f); F'(e) = F(f;e) for linear
idempotents.

We should interpret this in the cagds the trivial one object categorywith its only
choice of linear idempotents. A guarded funcior 1 — D is a choice of objech € D
and linear idempotent, : D — D. We call this aguarded object

We also need some notion ®icell between guarded functors
Definition 3.3. Let F, G : C — D be guarded functors. guarded transformationr
simply transformationconsists of data 4, : FA — G A satisfying

F(ida); F(u);ap = aa; G(u); G(idp)

forallu: A— BinC.
We do not spell out here the consequences of these definibohsote the following.

Theorem 3.4. Guarded categories, guarded functors and transformations a 2-
category, theguardedd-category

The only subtle point is the composition ®fcells along &-cell, where one needs to
compose additionally with maps of the fol@¥'(id). We shall not need that here. The
composition of2-cells along al-cell by contrast is straightforward, and we shall need
terminology suggested by it.

2 The terminology is intended to suggest a focus on good behawince we compose with the
idempotents or guards. There is no stronger connectiorsothier uses of “guarded” in logic
or computer science.

12



Definition 3.5. Suppose thaty : ' — G andf$ : G — F are (guarded natural)
transformationsa and 3 are mutually inversga inverse tos) just whenau; 64 =
F(idA) andﬂA; Qg = G(ldA)

This amounts to taking inverses ®tells in the guarded-category.
3.2 Logical operators

3.2.1 Extension to maps

Clearly C must be equipped on objects with the structuree, and, false or, not of
classical logic: we write this structure as A, 0, V. There is a compelling way to
extend the propositional operators to maps. Given prddfd B andC -9 D, there is
a canonical proofl A C' /"9 B A D given by the following

AFB CFD
A, CFBAD

ANCEFBAD

Similarly we havef v g a proof of AV C = BV D. So in terms of our algebraic notation
we should define

frng=(-9) , fvg=(-9).
Thus(C is equipped with operations andV on maps. It turns out that they are not
functorial, but in a suitable sense guarded functorial. Bkensense of that we need a
collection of linear idempotents. We identify that classalows.

We first note a useful computation in okHpolycategories for classical logic. We give
just the version for conjunction as that for disjunctionusbito it.

Proposition 3.6. Suppose thaf : A — C,g: B — D,h:C — Fandk : D — F
are maps. TheQf A g); (hA k) ={f,q};(h-k).

Using also the Additional Assumption of 2.2.2 we deduce atdhe following.

Proposition 3.7.1f e, : A — Aandep : B — B are linear and idempotent, then so
areey ANeg andey V ep.

We now associate with our categorical model class of linear idempotents. We simply
close the collection of identity maps under the logical agiens. (We make clear what
that means in case of and 1.) We introduce some notation for tlsanonical linear
idempotentsvhich we have identified. We write

eA,BzeA/\B:idA/\ing GA,BZGA\/B:idA\/idB .
We also take a nullary version of these, setting
eT = %

€] =%

with the obvious interpretation in each case.

13



Theorem 3.8.(i) T with et and dually L with e, are guarded objects.
(i) The operatorA : C x C — C is a domain absorbing guarded functor, while dually
V :C x C — Cis a codomain absorbing guarded functor.

3.2.2 Coherence

When we come to reconstructgpolycategory from our category we need to observe
some relations between our canonical linear idempotergsiliMgtrate the point here.
Concentrating on conjunction we have on the one hand thegdeant

€A7B/\C:idA/\idB/\ciA/\(B/\C) —>A/\(B/\C>
and on the other
€A7B7C:idA/\(idB/\idc):A/\(B/\C)—>A/\(B/\C).

Intuitively the second decomposes things more than the dinst this is reflected in the
fact that the second absorbs the first in the sense that

eaBc;eannc =€apc and eaprcieanc =e€apc -

The first calculation depends on the linearityidf - id- from the Additional Assump-
tion of 2.2.2.

Generally the situation is as follows. Given propositiohsve have many bracketings

to give a conjunction\ A;. Given one such we have a variety of idempotents depending
on how deeply we ‘analyse the bracketings’. The shalloweslyais yieldsd 5 4, the
deepesé/\ 4, = N\idy,. The coherence of these idempotents is the following fact.

Proposition 3.9. Suppose in the given situation thatis an idempotent corresponding
to a deeper analysis tha3. Thene;; e; = e; = es; €5.

We note the nullary version of the propositien:; id+ = et = idr; eT.
3.3 Structure

3.3.1 Units and associators

Our logical operations are only guarded functorial, buyttie come equipped with
structure familiar in the case of tensor products. We coimaenon the case of and
A; the case ofl. andV follows by duality.

First we can define maps

l=%-idy:A—=TAA izﬁ:‘l’/\fl—u‘l
r=idg-x: A= AANT F=(@1d})s:ANT = A

14



where the superscript indicates a tacit use of exchange. We also have assogyativit
maps defined as follows

a=(id4 -idg) -idec : AN(BAC) — (AANB)ANC',

idyg - (idg -id¢) : (AAB)AC — AN(BAC).

Q
I

(There is only one sensible way to read those definitions!h@te at once that all these
structural maps are linear.

By direct computation we show the following.

Theorem 3.10.The pairs of mapéand!, » and, « anda, are in each case mutually
inverse guarded transformations.

Note that the equations given by our definitions are not cihigefamiliar ones. For
example since\ is domain absorbing we do have

(f A g) ANh;a=a; f N (g A h)§ EA'A(B'ACY)
but we only have the more familiar

(fAg ANha=a;fA(gAh)

whenf, g andh are linear.

Perhaps surprisingly, it is automatic that our associawisatisfy the Mac Lane pen-
tagon condition and the usual unit conditions on the nose.diagrams are familiar
and we do not exhibit them here.

Theorem 3.11.The Mac Lane pentagon and unit conditions
aA,B,CAD; GANB,C,p = 1da A ap,c,p; aa,BAC,D; GA,B,c N idp

aarc;ra idg = idy A lg
both hold.

Of course many other version of the diagrams (e.g. involdirgr) hold. However the
information contained in the coherence diagrams is quitélsuOne needs to bear in
mind that e.ga s sac,p IS NOt guarded natural i andC'. Let us say that enixed path
in the pentagon is one which involves batlanda. Many but by no means all mixed
paths are equal. For example, the two maps

a:AN(BA(CAD))— (AANB)A(CAD)

and
ida Aa;a;aNidpya: AN(BA(CAD)) — (ANB)AN(CAD)
are not equal. (There are some similar issues for the treagiggrams.)
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3.3.2 Symmetry

We have maps induced by the symmetry of etpolycategory. We use a superscript
()? to indicate a use of a symmetry 1, and define a twist map

C:(idB'idA)SZA/\B—>B/\A.

The picture is as follows.

We note at once that this further structural map is linearthvga compute.

Proposition 3.12.c4 g;cpa = eanp : ANB — A A B, thatis,c is a transformation
inverse to itself in the guarded sense.

Finally we look at coherence.

Theorem 3.13.The Mac Lane hexagon and unit conditions

aap,c;cANB,Ciacap =1ida A cpciaac,p;cac Nidp cT,A45mA = la

both hold.

We note a nuance. A symmetry of the formygacy : AN (BAC) — (BAC)NA
cannot be defined in the usual way from associativities anthsstriesc, p andc c.
Rather one has an equation of the form

CA(BAC); E(BAC)AA = @A B,C; CA,B Nido;ap aciidp Acaciapac -

Thus the usual definition holds in the guarded sense. Howhbigers quite enough to
establish the following.

Theorem 3.14.The symmetry satisfies the standard braid identities.

ca,B N\ idg;idg A ca,cyCp,c /N idg =1idg A CB,c;Ca,c N idg;ide A CA,B -

3.3.3 Linear distributivity

So far we have the operationis A and_L, Vv, which are dual. We need something like
the usual connection between them from Linear Logic to capgeneral polycategori-
cal composition. We define

wZIdA(ldBldc):(ldAldB)ldcA/\(B\/C)—>(A/\B)\/C
w:(ldAldB)ldczldA(ldBldc)(A\/B)/\C—>A\/(B/\C)
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where the many commuting conversions are indicated in th@xfimg pictures.

Note that these maps are linear.

There are two distinct kinds of symmetry at play here. On the lband we have the
following.

Proposition 3.15. w andw are self-dual: that is, we have

(wapc) =werpa- and (W4 pc)” = Wes g ax -

Essentially this follows from the de Morgan duality of theopf rules. On the other
hand we have the following.

Proposition 3.16.w andw are interderivable using the symmetry: that is, we have the
following equation and its dual.

WA,B,c = CA,BvC; CB,c Nida; We,B A;ide V €4 B: Co AnB

Many other relations between andw are consequences of these equations and the
idempotency of the symmetry

The basic result is as follows.
Theorem 3.17.The linear distributivities are guarded transformations.

There are a considerable number of coherence diagrams & av&tributivities. They
are clearly laid out in [2] and we do not have space to repeah there.

Theorem 3.18.The coherence diagrams for weak distributivities hold.

The only place where this bears interpretation is in the od4énit Coherence’ where
one finds canonical idempotents (identities in 2heategory of guarded functors).

3.3.4 Duality

A x-polycategory supports polymaps, : — — A*, A andev, : A, A* — — which
enable us to define something like a unit

Ng =i, -idg: B — A*V (AAB),
and something like a counit

ex=evy-idg: AN(A*VB)— B.
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One expects that the unit and counit are interchanged byetfelgality, though our
conventions on duality require mediating symmetries. (\Wite other choice of con-
vention, the problem emerges elsewhere!)

Proposition 3.19. Then ande are dual in the sense that the equations
car g Nida; (08)* = carvpe a; €5+ AN (63)"; Car praar = N3 ida= V cp- 4 hold.

Finally we get triangle identities in a guarded sense.
Theorem 3.20.We haved A na; c4.p = anp aNdn4., g;ida- V ep = eanyp.

This essentially gives an adjunction in the guardezhtegory.

3.3.5 Algebras and coalgebras

We consider now the structural maps

d:A—ANAt: A—T m:AVA—Au: 1l —- A

The de Morgan duality of the proof rules shows that thesecsiras are dual to one
another:

*

* * *
dA:mA*, mA:dA*, tA:uA*, UA:tA*.

In familiar category theoretic settings maps of these kirgsusually associated with
product and coproduct structure; but here we do not even duaarled naturality. But
the correctness equations of 2.3.3 give at once the foligwafation to canonical linear
idempotents.

Proposition 3.21. The mapsl, ¢t are codomain absorbing while. and v are domain
absorbing in the sense that following equations hold.

diegpa=d, tier=t and egqua;m=m, e ;u=u.

Moreover some structure holds on the nose.

Proposition 3.22. The structurg A, t 4, d4) forms a commutative comonoid, while the
structure(A, my4, u ) forms a commutative monoid.

We list the equations involved in the comonoid case.

dit Nida; 7 =idy  dida At =1idy
d;ida Nd;a=d;dANidy d;dNidy;a =d;idy Ad
d;c=d.
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3.4 The definition

We are now in a position to explain a notion of categorical eiddr classical proof.

In the definition one should think of the hom-séts4; B) as being the collection of
classical proofs of - B. Proofs of more complex sequents are coded indirectly in the
model.

Definition 3.23. A (static) model for classical (propositional) prootensists of the
following data satisfying the given axioms.

e A guarded categorg equipped with a (strictly) involutive self-duality-)*.

e Guarded objectS and L of C and guarded functors, Vv (respectively domain and
codomain absorbing) satisfying the usual de Morgan laws reispect to the duality.
Linear maps are maps v such that

uNv;fAg=(u; f)A(v;g) and fVguVue=(fiu)V(gv).

¢ Linear mutually inverse guarded transformations foand A

[:A—TAA, [: TNA— A,
r:A—ANT T:ANT — A
a:AN(BANC)— (ANB)ANC a:(ANB)ANC — AN(BAC)

of the left and right unit laws and associativity satisfyitmg usual pentagon and
triangle laws .
By duality we have also the same structure foandV.

e A linear self-inverse guarded transformation

c:ANB—=BAA

giving a symmetry for\, and satisfying the usual hexagon condition.
By duality we have also the same structure\for
e Linear guarded transformations

w:ANBVC)— (AANB)VC, w:(AVB)ANC — AV (BACQ)

interchanged by duality, interdefinable using the symmatny satisfying standard
coherence conditions for distributivities.

e Linear and mutually dual guarded transformatioris: B — A* Vv (A A B) and
e AN (A*V B) — B satisfying the triangle identities.

e An association to all objectd of mapsd : A — AN A,t: A — 1, and their duals
m:AVA— Aandu: L — AinC, codomain and dually domain absorbing, and
giving to each object! the structure of a commutative comonoid with respect to
and the structure of a commutative monoid with respect.to

This definition may seem substantially more complex thariogpes for linear logic;
but that may well be more a matter of lack of familiarity. Muchthe definition is
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concerned to say that one has-autonomous category, modulo issues of canonical
idempotents.

We now explain how, given a modgélof classical proof in the sense just described, we
can construct a-polycategoryC modelling classical proof in the sense analyzed earlier.
Splitting idempotents is a basic tool in category theorgifear in particular from the
theory of Morita equivalence. Here we could use it for a ngeepose: splitting some
canonical idempotents provides objects representingsptdyof objects on either sides
of polymaps. This means that we recover the sets of polyidpsA ). We explain the
point in a simple case. We have canonical polymaps

Z'A/\B:idA'idBZA,BﬁA/\B and inD:idC'idDZOVD%C,D.

SinceiAAB;?; icvp = {ida,idg}; f;{ide,idp} = f, we can regard (A, B; C, D) as
arising by splitting the idempotent

g — 1AAB; J;tcvD = €AnB; §; €CvD
onC(ANB;CV D).

So in outline the construction of the polycategorical modeas follows. We make
a choice of bracketings of both and A. This gives us hom-set§(AT",\V A) and
canonical idempotents, . and ey, ,. We can then tak€(I'; A) to consist of the
f € C(AT,VA) such thate/\p; f; eya = f. Finally we have a series of fiddly but
routine tasks.

(1) We show that’(I'; A) is essentially independent of the bracketing chosen. This
follows from the coherence of the canonical linear idemptsie

(2) We show how to define composition on the sets of polymalpis. Jombines point
(1) with heavy use of the linear distributivities. And we shthat the result is
indeed ax-polycategory.

(3) We define the logical operations on the collections olypaps and derive the
many equations. This is pretty much routine.

4 Explanation and comparison
4.1 Representable polycategories

We recall the relationship betweerpolycategories and-autonomous categories (see
[2] or [11] for example). Take the obvio@scategoriest Poly of «-polycategories and
xAut of x-autonomous categories: &Hcells are invertible so we are in the groupoid
enriched setting. Any-autonomous category determines-golycategory, with the
linear tensor and par representing polymaps; so one seethéna is a groupoid en-
riched forgetful functorSPoly : *Aut — xPoly. On the other hand one can freely
construct as-autonomous category generated by-polycategory, subject to obvious
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identifications. This gives a groupoid enriched funciotut : xPoly — xAut and a
groupoid enriched adjunctiofiAut - SPoly. The basic conservativity result proved
by direct syntactic considerations in [2] (though see [bt}dn indication of a semantic
proof) is as follows.

Theorem 4.1.In the groupoid enriched adjunctiofiAut 4 S Poly, the unit
P — SPolySAut(P)

is full and faithful for any«-polycategoryP.
When does &-polycategoryP arise from ax-autonomous category, that is when is it
in the essential image ¢fPoly? This occurs just when there are maps

tap: A B—AANBit:——T icp: CVD—C/Di 1 — —

composition with which induces isomorphisms

P(ANB,T;A)=P(A, B, T; A) P(T,T;A) =PI A),
P(I;A,CVvD)=PI;AC,D) PI;AL) =PI A).
In particular for anyl’, A we have isomorphismS(I'; A) = C(AT;V A) where we
write AT and\/ A for a conjunction and disjunction according to some braokst

In these circumstances we say thats, i, i«cp and¢, provide a representation of
polymapsor more loosely that, T, Vv, L represent polymaps

4.2 Representability and functoriality

Consider now &-polycategorical modef for classical proof: it comes equipped with
structure

1AB =1AAB, T =%, lop=Ilove, 1L =%
(using earlier notation) potentially providing a represgion of polymaps.

From our outline of the reconstruction of thepolycategory, we see that we have rep-
resentability just when the canonical linear idempotents
eans =tap, er=001)", ecvp=rticp, erL=(iL)"

are in fact identities. By duality, we only need half of thisrepresentability is equiva-
lent to the conditions

et = idt and idg Aidg = idasg -
Next note that, as is guarded domain absorbing, we have

fAgGhAkidg ANide = (f;h) A (b k);idg Aidp
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SO thatldE ANidp = idgap gives
fAgih NE=(fih) A (hik)

which is functoriality ofA. One should regare = id+ as functoriality ofT. Then one
can summarise the discussion in the following.

Theorem 4.2.LetC be a model for classical proof. Then the following are eqleémt

(1) The identity conditiongls A idg = idsnp andet = id-.
(2) Full functoriality of A, and T.
(3) Representability of polymaps by T andV, L.

This makes clear the oversight in [11]. There linear mapsevassumed to form a
x-autonomous category; but that givies, A idg = id4,5 and so functoriality of the
logical operators. Note also that the conditjong; hAk = (f; h) A(h; k) follows from
that naturality of the\-R rule which we did not adopt. However that condition is warak
than full functoriality. It is easy to find models in which ibhls butid 4 Aidg = idaxp
fails.

4.3 Why functoriality should fail

As we shall see the assumption of representability proadasstantial simplification
of the notion of categorical model. So it is time to explainywire do not adopt it.

First we argue against the tempting naturality\eR

{u,v};(f-9) = (u; f) - (v;9).

Consider firs{m, idg}; (id4, idg). Composing withidz does nothing so this is equal
tom; (id4, idg), which is represented by the proof

AFA AFHA

AVAFAA A+A BFB
AVAFE A A BFAAB

AVABFAAB (1)

There are two distinct ways to eliminate the Cut. One resauitise normal form

AFA AFA
AVAF A A

AVAFA BFB

AVABFAAB )

and the other in the normal form

A-rA BrB AFA BFB
ABFAANB ABFAAB

AV AB,B-AANB,A\NB
AVABFAAB (3)
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Now considelm;id4) - (idp;idg). This is clearly equal te: - id 5 which is represented
by the first of the above two normal forms. There is no way tcagjéte second (though
that is the normal form in which: has done its intended job of copying). Now we take
the view that failure to have the same normal forms (even rooolovious rewritings)

is a clear sign of non-identity. We conclude that the naityraljuation

{m,idB}; (ldA . ldB) = (m; ldA) . (idB; ldB)

is not faithful to the notion of proof encapsulated in thewssg calculus.

We explain the significance of this for the functoriality/of Considerid 4 A id. Note
that

(m VAN idB); (ldA VAN ldB) = {m, idB}; (ldA : ldB) and mA ldB =m- ldB .
Now we just argued that we should not have

{m, idB}; (ldA . ldB) =1m:- ldB .

But asinp; h = h, the operatiorf ) is injective. So we cannot have the equation
(m A idB); (ldA N ldB) =mA 1dB .

The general point seems to be this. If we cut a classical preen with such simple
proofs as given by our canonical linear idempotents, thercave in general, obtain
additional normal forms that were not available from thessieal proof on its own.

4.4 FRihrmann-Pym Axioms

We observed already thatsapolycategory in which the polymaps are represented by
A andV is in effect ax-autonomous category. If one has a model for classical pbof
this kind the structure simplifies drastically.

Theorem 4.3. To give a model of classical proof in whigty T and vV, L represent
polymaps is to give the following data.

e A x-autonomous categofy (with a strict duality): tensor i\ and parV.

e The equipment on each objedtof C of the structure of a commutative comonoid
with respect to tensor (and so dually the structure of a cotatiue monoid with
respect to par).

This is the equality component of the structure proposedilrifrann and Pym [6]. (It
is not the only simple possibility. We have recently seenlwj@?] of Lamarche and
Strassburger which leads to an even more restrictive ngtion

There are a number of further connections between the Fadm¥Rym notion and the
one described in this paper. One simple thought is as foll8wppose that is a model
for classical logic in the general sense, freely generayestbine category of objects and
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maps. (This makes sense by Kelly-Power [13].) We can indelgtdefine idempotents
e on objectsA of C: we sete, = id 4 for atomic objects (which includes the dual¥)
andthenset g = es Aeg andeyyg = e4 V eg. (Implicitly we have taker ande |
as we found them.) Then we can define a quoticat C with

A

C(A,B)={f€C(A B)|ea; fres = f}.
The quotient functor is given by
C(A,B) — C(A,B) : f —ea;fiep.

Now it is easy to see thathas on the nose the structure whithas up to idempotents.

Theorem 4.4.1f C is a model for classical proof freely generated by a categirgnC
is a model in the Bhrmann-Pym sense.

4.5 Semantic possibilities

We hope to write more fully about models in further paperdosmow we survey the
possibilities. We distinguish between the following.

e Degenerate models: that is categorical models based onamtrolpsed categories
(and so ignoring the difference betwegsrandV). We think of these as abstract in-
terpretations, allowing one in particular to associatergetaof invariants to proofs.
Preliminary observations are in [12], [7].

e Categorical models: that is models satisfying the FuhmaR@ym equality axioms
[6]. We know some examples of these, and have a little thérythere is more to
do.

e General models: that is, models which are equivalent togadggories which do not
arise froms«-autonomous categories. We know almost nothing about these

5 Provisional Conclusions
5.1 Guiding Principles

The notion of model for classical proof theory which we hageeloped has unfamiliar

features. Hence it seems worth reflecting on the principleghwhave informed our

analysis.

Reduction principle for logical cuts. For us this is the remnant of the Martin-Lof
criterion (see Prawitz [18]) for identity of proofs. At ldasome part of normalisation
preserves meaning: we ask that simple detours should neémshis is an essential
component of our analysis, without which we would not havenesting equalities

between (representations of) proofs.

Structural congruence This an idea taken from concurrency theory. We follow that
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culture in taking the structural rules of Weakening and @artion to behave well with
respect to themselves: so we end up with commutative cordastaicture forT, A
and commutative monoid structure far, V. However not a great deal rides on this
choice. We note that the optical graphs of Carbone [3] pefiiee models for a notion
of abstract interpretation in which this choice is not made.

Computation of values We take something from ideas of non-determinism: a claksic
proof has a non-deterministic choice as to the normal foomgiich it reduces. We take
account of all plausible commuting conversions and the likth a view to having some
good representation of proofs. For these we hope that itasgtble that if proofs are
equal then they should have the same normal forms. Wherewessivadence of distinct
normal forms we have taken it to be evidence that the pro@slatinct. Though we
need to say more about equality to make the claim precisegli@/b that our analysis
is consistent with this principle in the following sense.

Proposition 5.1. If two proofs are equal then they reduce to the same colleaiio
normal forms.

5.2 Further issues

Normal forms and meaning We consider the question whether our general principle
in the last proposition should be an equivalence: does bawia same set (or maybe
multiset) of normal forms entail equality of proofs? At thement we would argue
against that.

MIX . There is something right about the idea that proofs in atak$ogic involve
some kind of non-determinism: the computation or reducpoocess is in principle
non-deterministic. But we do not for example have primgifer non-deterministic
choice. In particular in view of [1] we should investigate approach to the idea of
non-deterministic choice in proofs using the MIX rule.

Idempotents While it is not clear whether our formulation of semantios ¢lassical
proof is robust, its use of canonical idempotents would lhedher investigation. We
have not space to describe here the consequence of splilimgpotents in a model for
classical proof in our sense.

Linearity . In this paper we have used a notion of linearity which hasgai¢d to
some extent the general failure of functoriality of the tajioperations. We have not
troubled with natural refinements (linearity in the domaircodomain). In a properly
algebraic formulation we would expect to follow Power [1Tidatake this explicitly
as part of the structure. Before doing that we should prgbdétide just how much
use to make of it. In [11] where already an explicit notion ioiehrity is proposed,
the idea was that linear maps would also be maps of the conireutaalgebra and
commutative algebra structure. It seems that to make gowms# that one must forbid
some superficially natural ways to reduce Cuts. (For example&ould allow to reduce
proof (1) in Section 4.3 to only (2) but not (3).)
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