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Abstract

Zero-shot learning (ZSL) can be considered as a special

case of transfer learning where the source and target do-

mains have different tasks/label spaces and the target do-

main is unlabelled, providing little guidance for the knowl-

edge transfer. A ZSL method typically assumes that the two

domains share a common semantic representation space,

where a visual feature vector extracted from an image/video

can be projected/embedded using a projection function. Ex-

isting approaches learn the projection function from the

source domain and apply it without adaptation to the target

domain. They are thus based on naive knowledge transfer

and the learned projections are prone to the domain shift

problem. In this paper a novel ZSL method is proposed

based on unsupervised domain adaptation. Specifically,

we formulate a novel regularised sparse coding framework

which uses the target domain class labels’ projections in the

semantic space to regularise the learned target domain pro-

jection thus effectively overcoming the projection domain

shift problem. Extensive experiments on four object and ac-

tion recognition benchmark datasets show that the proposed

ZSL method significantly outperforms the state-of-the-arts.

1. Introduction
Conventional approaches to visual recognition are based

on supervised learning. That is, given a large labelled train-

ing dataset of a known set of classes (e.g. hundreds of in-

stances per class), a classifier is learned to classify each in-

stance in a test dataset into the same set of classes. Collect-

ing large quantities of annotated instances for each class is

a bottleneck, especially when visual recognition research is

moving towards a finer granularity [3]. For example, nam-

ing many fine-grained bird classes (e.g. Snowy Egret) is

very challenging for most people except bird experts, let

alone collecting instances. Inspired by humans’ ability to

recognise a new object category (class) without ever seeing

a visual instance, zero-shot learning (ZSL) has received in-

creasing interests [18, 9, 19, 23, 15, 1, 36, 11, 2]. Given

a labelled training dataset containing seen classes, visual

recognition by ZSL aims to recognise a visual instance of a

new class that has never been seen before (hence zero-shot),
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Figure 1: An illustration of the visual feature projection ap-

proach and how it suffers from the domain shift problem

[28] without domain adaptation. For the two classes in the

source domain and the two in the target, both their visual

feature vectors and class names are embedded in a semantic

space (attribute in this case) shared between the two do-

mains. When the low-level feature projection function is

learned from the source and applied without adaptation to

the target, the target domain data and their class prototypes

are well separated, resulting in poor classification. This is

due to domain shift – although both tiger and zebra have the

‘has stripe’ attribute, their stripes are visually very different.

which greatly reduces the annotation cost and makes visual

recognition more scalable.

A machine learning approach to ZSL requires to extract

the knowledge from the labelled training (source) dataset

and to transfer that knowledge to the test (target) dataset.

ZSL can thus be considered as a special case of transfer

learning [28]. However it differs from conventional induc-

tive transfer learning [28] such as multi-task learning in

that the target domain is unlabelled, and transductive trans-

fer learning such as domain adaptation [16] because the

two domains have different tasks and non-overlapping label

spaces. This unique setting renders most existing transfer

learning methods inapplicable.

Since the target domain has no labelled data, existing

ZSL methods adopt a naive transfer learning approach by



which a model learned from the labelled source domain

is applied to the target domain blindly without any model

adaptation. More specifically, existing ZSL methods typ-

ically assume that there is a semantic embedding space

within which both the feature space and the class label

spaces of the source and target domains can be embedded

(see Fig. 1). A commonly adopted semantic embedding

space is an attribute space [6, 18, 1, 37, 15], e.g. the class

label ‘polar bear’ can be represented as a binary attribute

vector indicating that it ‘is white’, ‘has fur’ and ‘eats fish’.

Alternatively, such a space could be a semantic word space

[24, 10, 11, 2] where the bigram ‘polar bear’ is represented

as a high-dimensional word vector. The embedded label

vector in any given semantic space is called a class pro-

totype [10, 11]. Given a semantic embedding space, most

existing methods take a visual feature projection approach

[18, 9, 19, 23, 15, 1, 36, 11, 2]. Specifically, the knowledge

extracted from the source data is represented in the form of a

projection function that maps each low-level feature vector

computed from a source object image (labelled) to its class

prototype as an attribute or word vector. After this projec-

tion, the learned knowledge (projection function) is applied

to the target data to project each target image into the same

embedding space. After such projections, the classification

of these target images can be simply nearest neighbour dis-

tance matching to the target class prototypes in the semantic

space [9, 19] or its probabilistic variants [18, 10]. Without

adapting the learned projection function to the target do-

main, existing methods are prone to the projection domain

shift problem [10], as illustrated in Fig. 1.

In this paper, we propose to solve the domain shift prob-

lem by developing a new unsupervised domain adaptation

model. As mentioned earlier, the ZSL problem itself is

not a domain adaptation problem because the two domains

have different tasks/classes. However, taking a visual fea-

ture projection approach, the learning of projection func-

tion for the target domain is a standard domain adaptation

problem – both domains are projected into the same label

space (attribute or word vector) – albeit an unsupervised

one as no label is available in the target domain. Uniquely,

instead of learning a typical classification/regression func-

tion as in most previous works [18, 9, 10, 11, 2], we cast

the projection function learning problem as a sparse cod-

ing problem: Each dimension of the semantic embedding

space corresponds to a dictionary basis vector and the coef-

ficients/sparse code of each visual feature vector is its pro-

jection in the semantic embedding space. To learn a mean-

ingful dictionary/projection function for the target data, we

introduce two important regularisation terms in the cost

function making our framework a regularised sparse coding

model designed specifically for unsupervised domain adap-

tation. The first term controls the adaptation strength from

the source domain to the target domain, whilst the second

term rectifies explicitly the domain shift problem in ZSL,

requiring the embedded target data to be near to the unseen

class prototypes.

Our contributions are twofold: (1) For the first time, ZSL

is formulated as an unsupervised domain adaptation prob-

lem, tailor-made for solving the challenging ZSL problem.

(2) A regularised sparse coding based unsupervised domain

adaptation framework is proposed to solve the domain shift

problem suffered by existing ZSL methods. Extensive ex-

periments on four challenging object and action benchmark

datasets [18, 34, 32] validate the advantages of the pro-

posed model, and demonstrate that the proposed model out-

performs the state-of-the-arts naive transfer learning based

models [4, 18, 1, 10, 37, 15, 19, 20, 11, 2] when applied to

ZSL, often by a big margin.

2. Related Work

Semantic Embedding Space. All ZSL methods exploit

semantic embedding spaces as the bridge for knowledge

transfer. The semantic embedding spaces considered by

most early works are attribute spaces [18, 19, 23, 15, 1, 36].

However, to represent an object class in an attribute space,

an attribute ontology has to be defined manually (e.g. what

attributes are needed to describe different types of birds)

and each class needs be annotated by an attribute vector

(e.g. a bird expert needs to define various attributes of a

Snowy Egret). Such requirements hinder the scalability of

an attribute space based ZSL method. To overcome this,

more recent works explore the semantic word vector space

[9, 10, 26, 11, 2], which is learned using large corpus of

unannotated text for natural language processing tasks such

as sentence completion [24]. The text corpus is so big that

any class label or textual description of the class [5] can be

embedded in this space, effectively mitigating the scalabil-

ity issue. Both types of spaces are exploited simultaneously

in our framework.

Visual Feature Projection vs. Visual-Semantic Similar-

ity Matching. As mentioned earlier, most existing ZSL

methods are visual feature projection based. Alterna-

tively, a visual-semantic similarity matching approach can

be adopted [18, 7]. Taking this approach, the knowledge

from the source data is learned and represented in the form

of a n-way probabilistic seen class classifier. This knowl-

edge is then applied to the target data by computing a

visual similarity between a target image and each of the

source classes in the visual feature space. Finally, a tar-

get data point is classified to a target class if the visual

similarity relationships between the data point and all the

source classes match with the corresponding semantic sim-

ilarity relationships (profile) between this target class and

all the source classes in the semantic space. Our regu-

larised sparse coding based domain adaptation framework

combines the visual feature projection and visual-semantic



similarity matching based approaches in a single formula-

tion. Specifically, visual-semantic similarity matching is

integrated seamlessly as part a regularisation term in our

sparse coding based projection function learning model. We

demonstrate empirically through experiments that fusing

the two types of approaches benefits the ZSL task.

Projection Domain Shift. The problem of domain shift

under the ZSL setting was first reported in [10] and known

as the projection domain shift problem. The solution of-

fered in [10] is a heuristic one-step self-training strategy to

pull the prototype towards its closet data points (not neces-

sary from the same class) followed by a multi-view embed-

ding based on canonical correlation analysis (CCA) to align

different semantic spaces with the low-level feature space.

Our method differs from [10] in that (1) We consider this

as unsupervised domain adaptation problem and develop a

single-step learning process to adapt the projection function

from the source to the target domain. In contrast, in [10] it is

learned by two separate steps: first learned from the source

data then adapted to the target data using CCA embedding.

Any missing information from the first step cannot be re-

covered in the second step. (2) Our model rectifies the do-

main shift problem by visual-semantic similarity matching

using regularisation in sparse coding learning, rather than a

heuristic preprocessing step based on one-step self-training.

Our experiments show that this more principled approach is

superior to the heuristic approach of [10].

Unsupervised Domain Adaptation. Despite the fact that

ZSL as a whole is not a domain adaptation problem, a key

step of its solution – learning a target domain projection

function is, because both the source and target data have

the same task of projection to the same semantic space. A

large variety of unsupervised domain adaptation approaches

have been proposed [22] ranging from covariate shift, self-

labelling, feature representation adaptation, to clustering

based approaches. Most of them are designed for text doc-

ument analysis. However, recently a number of methods

are proposed for visual recognition [30]. Among them

the most relevant are the unsupervised subspace alignment

based approaches [13, 12, 25, 8], as sparse coding can also

be considered as learning a projection to a subspace (i.e.

the semantic space in ZSL). However, there are key differ-

ences: First, we do not aim to align data distributions of the

source and target domains. This is because although they

can be described by the same set of attributes, it is a multi-

label problem (e.g. each image is described by multiple at-

tributes), which is a setting not considered in [13, 12, 25, 8].

Second, since the target class labels can be embedded in the

same space, they are exploited to regularise the learned tar-

get domain projection to explicitly tackle the domain shift

problem. In contrast, the subspace learned in [13, 12, 25, 8]

does not have semantic meaning thus cannot exploit the se-

mantic relatedness between target and source data classes.

Note that our unsupervised domain adaptation method is

also transductive. This is because of the unique nature of

zero-shot learning: there is no separate training data in the

target domain.

3. Methodology

3.1. Problem Formulation

Suppose there are cs source classes with ns labelled in-

stances S = {Xs, Ys, zs} and ct target classes with nt

unlabelled instances T = {Xt, Yt, zt}. Each instance is

represented using a d−dimensional visual feature vector.

We thus have Xs ∈ R
ns×d and Xt ∈ R

nt×d, and Xs =
[x1, . . . ,xns

] and Xt = [x1, . . . ,xnt
] where xi ∈ R

d.

zs ∈ R
ns and zt ∈ R

nt are class label vectors for the source

and target data respectively. We assume that the source and

target classes are disjoint: zs ∩ zt = ∅. Given a seman-

tic embedding space, Ys and Yt are the m−dimensional se-

mantic representation of each class label z in the source and

target datasets respectively (e.g. m-dimensional binary at-

tribute vectors). Therefore, Ys ∈ R
ns×m and Yt ∈ R

nt×m;

Ys = [y1, . . . ,yns
] and Yt = [y1, . . . ,ynt

], where yi ∈
R

m. For the source dataset, Ys is given because each visual

instance xi of the source data is labelled by either a binary

attribute vector or a continuous word vector representing its

corresponding class label zis. In contrast, Yt has to be esti-

mated because the target dataset is unlabelled. The problem

of zero shot learning (ZSL) is thus to estimate Yt and zt

given Xt.

3.2. Sparse Coding for Projection Learning

We aim to learn a projection function to map each

d−dimensional visual feature vector xi in Xs or Xt to a

m−dimensional semantic embedding vector yi. We typi-

cally have m < d, i.e. we seek a lower dimensional sub-

space to project xi into. In the context of ZSL, the sub-

space is a semantic space (attribute or word). In this work,

the learning of the visual space to semantic space projec-

tion is formulated as a dictionary learning and sparse cod-

ing problem. Sparse coding aims to represent a data vec-

tor as a sparse linear combination of basis elements, which

are atoms of a learned dictionary. Taking attribute space as

an example, to project a data point from the visual feature

space (higher dimensional) to an attribute space (lower di-

mensional), we consider that each basis element (atom) cor-

responds to an attribute (or an axis in the attribute space).

For example, to represent the attribute of ‘has fur’ in an

image of an animal, a corresponding sparse coding coef-

ficient of the image is the weight of that basis element in

the image which represents how much fur is present in that

image1. Denote the dictionary as D ∈ R
d×m, a visual fea-

ture vector xi can be reconstructed as D yi using its co-

efficient vector/projection yi and the dictionary/projection

matrix D. Dictionary learning is thus to learn D and yi to

1This is related to the concept of relative attributes [29].



minimise the reconstruction error. In our definition, each

dictionary basis has clear semantic meaning therefore we

call the learned dictionary semantic dictionary.

Next we shall formulate the dictionary learning problem

separately for the source and target domains respectively,

and highlight the difference in their formulations. First,

in the source domain the sparse coding coefficient vector

for each visual instance is known: For each xi, its corre-

sponding yi is the embedding (attribute or word vector) of

its class label zis in the semantic space. This is very dif-

ferent from the conventional dictionary learning by sparse

coding whereby yi needs to be estimated together with D.

Let us denote the source domain semantic dictionary as Ds,

the dictionary learning problem can be solved by quadratic

optimisation:

Ds = min
Ds

‖Xs −DsYs‖
2

F , s.t. ||di||
2

2
≤ 1, (1)

where ‖.‖F is the Frobenius norm of a matrix. It is a stan-

dard least squares minimisation problem with a closed form

solution. To avoid trivial solutions, a regularisation term is

added to favour a solution of smaller norm. Eq. (1) thus

becomes:

Ds = min
Ds

‖Xs−DsYs‖
2

F+λ||Ds‖
2

F s.t. ||di||
2

2
≤ 1, (2)

where λ controls the strength of the regularisation term.

This is known as a ridge regression problem, also with a

closed form solution [14].

Second, contrary to the source domain, the formulation

for dictionary/project function learning by sparse coding in

the target domain requires the conventional sparse coding

mechanism as both the dictionary and the coefficient vectors

are unknown and need to be learned from data:

{Dt, Yt} = min
Dt,Yt

‖Xt−DtYt‖
2

F +λ||Yt‖1 s.t. ||di||
2

2
≤ 1,

(3)

where ||Yt‖1 =
∑nt

i=1
||yi‖1. In this formulation, the model

is essentially learning a sparse representation of the data un-

supervised. Since both Dt and Yt are unknown and uncon-

strained (apart from enforcing Yt to be sparse), there is no

guarantee that the learned representation captures a suitable

semantic embedding space so that Dt is the correct projec-

tion function for Xt and the projection Yt in the semantic

embedding space is meaningful for ZSL. Indeed, we found

through experiments that without any regularisation, the un-

supervised learned Dt has no use for ZSL.

Such a regularisation could come from the labelled

source domain. Following the conventional naive

transfer/non-adaptation ZSL approach, Ds is learned from

the source domain (Eq. (1)) and then applied directly to the

target data. This method, which forces Dt = Ds rather than

allowing Dt to be adapted from Ds, is prone to the domain

shift problem illustrated in Fig. 1. To overcome this domain

shift problem, we propose to use both Ds and the target do-

main class prototypes to regularise the learning of Dt. This

results in a novel unsupervised domain adaptation method

for ZSL based on regularised sparse coding.

3.3. Unsupervised Domain Adaptation by Regu-
larised Sparse Coding

Now, we introduce two critical regularisation terms into

Eq. (3) to impose (a) an adaptation regularisation con-

straint: The Dt learned from the unlabelled target data

should be similar to Ds learned from the labelled source

data; and (b) an visual-semantic similarity constraint: The

“closeness” of the interpretations of target data (yi) to their

true class labels in the semantic embedding space (i.e. un-

seen class prototypes denoted as p
t
i and i ∈ {1, . . . , ct}).

This defines the new regularised sparse coding framework:

{Dt, Yt} = min
Dt,Yt

‖Xt −DtYt‖
2

F + λ1‖Dt −Ds‖
2

F+

λ2

∑

i,j

wij‖yi − p
t
j‖

2

2
+ λ3||Yt‖1 s.t. ||di||

2

2
≤ 1.

(4)

Adaptation regularisation constraint (AR). Compared

to Eq. (3), the new regularisation term ‖Dt − Ds‖
2

F in

Eq. (4) regularises the amount of adaptation (closeness) of

the learned dictionary Dt to the supervised learned dictio-

nary Ds. This term makes sure that the learned Dt is also a

semantic dictionary that projects a target data point from the

feature space to the same semantic space as Ds. In this re-

gard, Ds is treated as a basis for learning the dictionary Dt

so that Dt is not deviated freely from Ds. Without this reg-

ularisation, Ds could be adapted towards a trivial solution

especially when nt > ns, i.e. the target data outnumbers

the source data.

Visual-semantic similarity constraint (VSS). The second

new regularisation term
∑

i,j wij‖yi − p
t
j‖

2

2
in Eq. (4) en-

forces the visual-semantic similarity constraint. This is used

to ensure that the learned coefficient vector yi for each tar-

get data (its projection in the semantic embedding space)

is close to its true class label zti , embedded in the semantic

embedding space as p
t
i. Since zti is unknown, we obtain

an estimate by visual-semantic similarity matching using

the indirect attribute prediction (IAP) method [18], where

a probability is computed for xi being labelled as ztj which

defines the closeness of yi to p
t
j . Formally, the probability

of xi being the j-th unseen class is used as weight wij to en-

force a closeness in the distance between the projection yi

and the j-th unseen class prototype pt
j , resulting in this reg-

ularisation term defined as
∑

i,j wij‖yi − p
t
j‖

2

2
. Note that

this constraint utilises visual-semantic similarity matching

whilst the sparse-coding dictionary aims to estimate the op-

timal visual feature projection. Our model therefore ex-

ploits simultaneously both ZSL strategies (see Sec. 2) in our

unified regularised sparse coding framework.



Algorithm 1: Unsupervised domain adaptation for

ZSL

Input: {Xs, Ys}, Xt, Ds, {pt
1, ...,p

t
ct}, λ1, λ2 and λ3.

Output: Yt the coefficients for unseen class data, and Dt

the dictionary.

1 Initialise: Yt and wij by Eq. (3) and IAP respectively

2 while not converge do

3 Update Dt by Eq. (6);

4 Update Yt by Eq. (7);

5 end

3.4. Optimisation
It is important to point out that Eq. (4) is not convex for

Dt and Yt simultaneously, although it is convex for each of

them separately. We thus deploy an alternating optimisation

method to solve it. In particular, we alternate between the

following two subproblems:

(1) Fix Yt, update Dt

D∗

t = argmin
Dt

‖Xt −DtYt‖
2

F + λ1‖Dt −Ds‖
2

F (5)

This is a standard least squares problem and we have the

closed form solution:

D∗

t = (XtY
T
t + λ1Ds)(YtY

T
t + λ1I)

−1. (6)

(2) Fix Dt, update Yt

Y ∗

t = argmin
Yt

‖Xt−DtYt‖
2

F+λ2

∑

i,j

wij‖yi−p
t
j‖

2

2
+λ3||Yt||1

(7)

In this equation, the first two terms can be combined into a

single quadratic form and it becomes a conventional sparse

coding problem. To solve it we use the Lasso [33] solver

from the SPAMS toolbox [21]. The iterations will termi-

nate when the objective function in Eq. (4) converges or

after a fixed number of iteration. Note that we put a posi-

tive constraint on coefficients if the attribute space is used

because it does not make sense to have a negative attribute

value. For semantic word space, this constraint is removed.

The complete algorithm is summarised in Algorithm 1. Our

algorithm always converges within 5 iterations in our exper-

iments.

3.5. Zero-Shot Classification
Single Semantic Space. Once the dictionary coefficients Yt

is estimated, zero-shot classification can be performed. In

this work, two classification strategies are considered: 1) a

nearest neighbour (NN) classifier and 2) a semi-supervised

label propagation (LP) framework. For the NN classifier,

given a target data xi, its coefficients yit is directly used to

compare with the unseen prototypes. It is then labelled as

the nearest unseen class. For the LP classifier, the method

in [10] is adopted. Specifically, we exploit the unseen data

and the unseen prototypes (as the labelled data) to set up

a graph, then the label information is propagated from the

unseen prototypes to each unseen data. We report the per-

formance of our algorithm on both strategies.

Combining Multiple Spaces. Multiple semantic spaces

can be easily combined in our framework to exploit their

complementarity. For example, after estimating Y A
t and

Y W
t for attribute and word space, respectively, we can com-

bine the similarity matrices from these two spaces by a sim-

ple strategy: For the NN classifier, the distances to neigh-

bours are averaged; for the LP classifier, the graph similarity

matrix are averaged before label propagation.

4. Experiments

4.1. Datasets and Settings

Datasets. Four datasets are used in our experiments. (a)

AwA dataset [18] consists of 30,475 animal images belong-

ing to 50 classes. An 85D attribute vector is provided for

each class. (b) Caltech-UCSD Birds 2011 (CUB) [34] is a

fine-grained dataset with attributes. It contains 200 different

bird classes, with 11,788 images in total. The class level at-

tribute annotations are given with 312 visual attributes (e.g.

color, part pattern). (c) aPascal-aYahoo [6] consists of two

attribute datasets: aPascal is a 12.695 images subset of the

PASCAL VOC 2008 dataset and aYahoo has 2,644 images.

A 64D attribute vector is provided for each image. There are

20 object classes for aPascal, and 12 for aYahoo and they

are disjoint. aPascal-aYahoo is used for cross-dataset ZSL

(see Sec. 4.4). (d) UCF101 dataset [32] is one of the largest

datasets for action recognition with 101 classes, contain-

ing 13,320 video clips and 27 hours of video data in total.

The videos are collected from YouTube with large camera

motions and cluttered background making them particularly

challenging. Each class is annotated with 115 hand crafted

attributes (e.g. body posture, body part motion). To our best

knowledge, there has been no zero-shot action classification

experiment reported on this dataset.

Features. We use two types of features: Deep Convolua-

tional Neural Network (CNN) features and traditional low-

level features. For the AwA dataset, we extract the Over-

Feat implementation of the CNN features (4,096D) [31].

For the low-level features, the dataset-provided low-level

features are used, same as in previous works [18, 1, 10].

For the CUB dataset, we extract the same CNN features as

for AwA. Since low-level features are not provided with the

dataset, we follow [1] to extract 96 color descriptors from

regular grids at three scales, and aggregate them into fisher

vectors (FVs) using 256 Gaussians. For aPascal-aYahoo,

we use the 9,751D low-level features provided by [6]. For

the UCF101 dataset, we use the features provided by the

THUMOS challenge [17] which contain 4,000D Motion

Boundary Histogram (MBH) features [35].

Settings. We use two types of semantic embedding spaces:

(a) An attribute space where each class is represented as a



binary attribute vector. (b) An 100D semantic word space

learned by the skip-gram model [24] using a text corpus

containing 4.6M Wikipedia pages. For the source/target

class split, we use the standard 40/10 split for the AwA

dataset. For the CUB dataset, we use the same 150/50 split

as in [1]. For aPascal-aYahoo, we use standard split, that

is, aPascal is used for training, and aYahoo for testing. For

the UCF101 dataset, two types of split are used: 81/20 and

51/50. In each experiment, we run 10 trails with different

random splits, and report the average classification accuracy

with standard errors. The four parameters λ, λ1, λ2, and λ3

(Eq. (2) and Eq. (4)) are set empirically and we found that

the results are insensitive to the parameter values. Other pa-

rameters are set by 5-fold cross validation using the source

data. These include the the LP parameters: the number of

neighbours to construct similarity and the parameter for bal-

ancing the propagation rate [10]. For the zero-shot classi-

fier (see Sec. 3.5), LP is used for the reported results unless

stated otherwise.

4.2. Comparison with the State-of-the-art

Comparative models. For AwA, we select 11 most recent

and competitive ZSL methods for comparison, as shown in

Table 1. These 11 models differ in various aspects: (1) Fea-

tures: Most reported results on the dataset-provided low-

level features, although more recently the CNN features

have been used [27, 4, 11, 2]. (2) Side information (SI): This

refers to what semantic information extracted from human

knowledge is used. In addition to embedding each class la-

bel into either an attribute space (A) or word vector space

(W), the Wordnet hierarchy (H) is used in [1] and [2]. Some

methods [37, 15] also use a different form of human annota-

tion: instead of class attribute annotation, a class similarity

(CS) matrix is annotated. (3) Most of them are based on the

visual feature projection approach, with the only exception

of IAP [18] which uses visual-semantic similarity match-

ing.

In contrast, far fewer studies have been reported on

the more challenging CUB dataset (more and finer-grain

classes). For the UCF101 action recognition dataset, no

results have been reported so far, although Liu et al. [19]

has tackled a similar zero-shot learning problem for action

recognition, albeit using different (much smaller) datasets.

The method in [19] is essentially based on learning projec-

tion to the attribute space using the source data and then

using the projection function to project the target data in the

attribute space followed by nearest neighbour based clas-

sification. In addition to [19], we also use code in [18] to

obtain the results on DAP and IAP. For all the competitors,

kernelised SVMs are used to learn the attribute classifiers

(projection function to the attribute space) and source class

classifiers (for IAP). In contrast, in our model the learned

dictionary acts as attributes classifiers.

Performance Comparison.

Method F SI AwA CUB

IAP [18] L/C A 42.2/44.5 5.60/19.5

DAP [18] L/C A 41.4/53.2 10.5/31.4

DS [20] L/C W/A 35.7/52.7 -

AHLE [1] L A+H 43.5 18.0

Deng et al. [4] L/C A 38.5/44.2 -

TMV-BLP [10] L A+W 47.1 -

Yu et al. [37] L CS 48.3 -

Jayaraman [15] L A+CS 48.7 -

Makoto [27] C A 62.4 -

Fu et al. [11] C A+W 66.0 -

Akata et al. [2] L/L+C A+W+H 42.3/67.8 19.0/47.1

Ours L/C A 47.5/73.2 26.7/ 39.5

Ours L/C A+W 49.7/75.6 28.1/ 40.6

Table 1: ZSL results on AwA and CUB in classification ac-

curacy on the target data (%). Notations – ‘F’: features; ‘L’:

low-level features; ‘SI’: side information; ‘C’: CNN fea-

tures; ‘A’: attribute space; ‘W’: semantic word vector space;

‘H’: WordNet hierarchy; ‘CS’: class similarity. When two

results are reported, they correspond to the two types of fea-

tures used.

AwA and CUB benchmarking – Table 1 shows that over-

all our method has the best performance on these two im-

age datasets. In particular, it is observed that: (1) On AwA,

if the same low-level features are used, our result (49.7%)

is the highest. (2) The results reported in [10] give the

most competitive alternative to ours in this setting. As dis-

cussed in Sec. 2, TMV-BLP [10] and the proposed model

are the only two which aim to rectify the projection do-

main shift problem by utilising the unlabelled target domain

data. These results suggest that the proposed new regu-

larised sparse coding based formulation is more effective

than the two-step (projection followed by adaptation) ap-

proach taken by [10]. (3) When the more powerful CNN

features are used, our model gains a significant performance

boost, rising from 49.7% to 75.6% and the gap to the best

alternative (67.8% [2]) becomes bigger. (4) The same con-

clusion can be drawn on the CUB dataset – our overall

results are superior to the compared methods. Note that

[2] obtained better result using the CNN features (47.1%

vs. 40.6%) but its result on low-level feature is much weaker

than ours (19.0% vs. 28.1%). It is worth pointing out that

[2] employ combined low-level and CNN features, and use

more than two semantic spaces. In contrast, other meth-

ods including ours use only one type of features and no

more than two semantic spaces. Richer features and more

complementary semantic spaces would certainly help our

method as well but were not used to be fair to other com-

pared methods.

UCF101 benchmarking – For this dataset, the results are



Method SI 51/50 (%) 81/20 (%)

DAP [18] A 02.2 ± 0.5 06.1 ± 1.5

IAP [18] A 06.9 ± 1.1 11.1 ± 1.9

Liu et al. [19] A 02.5 ± 1.2 06.2 ± 2.1

Ours A 13.2 ± 1.9 20.1 ± 3.1

Ours A+W 14.0 ± 1.8 22.5 ± 3.5

Table 2: Results on the UCF101 dataset

Method AwA (%) CUB (%) UCF101(%)

GFK [12] 65.2 31.7 16.3

SIDL [25] 64.3 33.2 18.7

SADA [8] 65.7 31.4 17.4

Ours-no-adapt 62.1 34.5 18.1

Ours 75.6 40.6 22.5

Table 3: Evaluations on unsupervised domain adaptation

methods. CNN features are used.

shown in Table 2. Comparing Table 2 with Table 1, it is

apparent that ZSL for action recognition from videos is a

much harder task than object recognition from images. In

particular, with 50 target classes in both CUB and UCF101,

the same DAP and IAP methods yielded much poorer re-

sults, close to the chance level (2%) in the case of DAP.

In addition, the following observations can be made: (1)

Our model performs much better than the three compared

alternatives [18, 19], almost doubling the recognition rates

of the best competitor (IAP) under both settings. Note that

although we use an additional semantic embedding space

(word space), our results with attributes alone is still much

better. (2) The very poor results from both DAP and [19]

suggest that projection without adaptation fails completely

on this dataset. Moreover, it also suggests that using the

source data to learn a n-way classifier for measuring the vi-

sual similarity is more sensible for video actions given the

larger domain shift problem at hand. This explains the bet-

ter performance of IAP than DAP and [19].

4.3. Comparison with Unsupervised Domain Adap-
tation Methods

In this experiment, we demonstrate unsupervised domain

adaptation helps ZSL, and our regularised sparse coding

based adaptation is better than the alternatives.

Competitors. For all three datasets, we compare our

method with three most recent and relevant subspace align-

ment based unsupervised domain adaptation methods: 1)

Geodesic Flow Kernel (GFK) [12] 2) Subspace Alignment

Domain Adaptation (SADA) [8] 3) Subspace Interpolation

Dictionary Learning (SIDL) [25]. All three methods at-

tempt to align the data distributions of the two domains.

When applied to our ZSL problem, the projection func-

tion (based on the same sparse coding model) learned in

the source domain can thus be used directly for the target

domain after they are aligned. In addition we also compare

with our model without adaptation, that is, setting Dt = Ds

(see Sec. 3.2), denoted as ours-no-adapt.

Performance Comparison. Table 3 shows the compara-

tive results. We can see that adaptation certainly helps in

our framework: comparing ours with ours-no-adapt, a clear

improvement can be observed thanks to the adaptation of

Ds to Dt using Eq. (4). The results also show that the al-

ternative subspace alignment based adaptation methods are

much weaker than ours. The results are slightly better than

that without adaptation on AwA; but on the more challeng-

ing CUB dataset, their adaptations have an adverse effect.

These results thus suggest that existing unsupervised do-

main adaptation methods are not effective under the ZSL

setting. This is because that they are designed for visual

recognition problems where each data can only have a sin-

gle class label. In a multi-label scenario such as ZSL (e.g.,

each AwA image can have dozens of attributes present), the

subspace alignment alignment strategy would not be a good

strategy. This is particularly true for CUB where all images

contain a bird and aligning the distributions of two sets of

bird images will have little effect because the two distribu-

tions may have already been similar. The alignment thus

would not help to solve the more subtle domain shift prob-

lem that the beak of a seagull is different from that of a

pigeon. In contrast, our model utilises the unseen class pro-

totypes to regularise the learning of target domain projec-

tion function which is specifically designed for rectifying

the domain shift problem for zero-shot learning.

4.4. Further Analysis

Effects of Regularisations Terms. In Fig. 2, we com-

pare our full model with various stripped-down versions of

the model to validate the contributions of the two regular-

isation terms in Eq. (4). Specifically we compare our full

model (Eq. (4)) with our model without the visual-semantic

similarity constraint, i.e. Eq. (4) without the regularisation

term
∑

i,j wij‖yi − p
t
j‖

2

2
(denoted ours–VSS, ‘–’ for mi-

nus) and our model without the adaptation regularisation

constraint (ours–AR). The results in Fig. 2 show clearly that

both regularisation terms contribute to the superior perfor-

mance of our model.

Effects of Combining Multiple Semantic Spaces. In

our framework, the attribute and semantic word vector

space are combined in our label propagation based zero-

shot classification algorithm (see Sec. 3.5). Figure 3 shows

the results of our model when only one of the two seman-

tic embedding spaces is used. It can be seen that the model

performance is notably improved by utilising both semantic

spaces. It is also noted that using just one semantic space,

the model already achieves very competitive performance.

Moreover, the performance in the attribute space is stronger
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Figure 2: Evaluation of the contributions of each compo-

nent of our framework on AwA, CUB and UCF101 (CNN

features).
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Figure 3: Effectiveness of combining multiple semantic em-

bedding spaces (CNN features).

compared to the word vector space because the latter is un-

supervised and does not benefit from human annotation. In

particular it is noted that the semantic word space is much

weaker for UCF101. This is because the action names such

as ‘apply lipstick’ and ‘ski-jet’ are much more abstract and

ambiguous to describe the rich content of the associated ac-

tions, compared to the nouns in the image datasets (e.g. ‘gi-

ant panda’). Simply embedding the class names to the se-

mantic word space may not be the best way to explore the

word space for ZSL in action recognition especially for sub-

tle and complex actions.

Effects of the classification methods. The results reported

so far are obtained using the label propagation (LP) clas-

sifier after domain adaptation. Table 4 shows that when

the nearest neighbour classifier (NN) with cosine distance is

used the performance is only slightly worse, by about 2%.

AwA(%) CUB(%) UCF101(%)

NN 74.1 38.4 20.1

LP 75.6 40.2 22.5

Table 4: Classification methods: nearest neighbour (NN)

vs. label propagation (LP).

The effects of the amount of target data used. One of the

key differences between our model and the alternatives ex-

cept [10] is that we exploit unlabelled target data in model

learning. This is determined by the nature of our approach
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Figure 4: The effect of the amount of target data used

– a transfer learning method with any form of adaptation to

the target data needs to use the target data. In this experi-

ment, we evaluate how the learned projection is affected by

the amount of target data used in model learning. Figure 4

suggests that the impact is very small. The performance on

all three datasets only drops slightly with as few as 1% of

the target data.

Cross-dataset ZSL. In this experiment, we follow the same

setting as in [18] and evaluate our model on using aPascal

[6] as source data and aYahoo [6] as target data. Since these

datasets have per-image attribute annotations we learn dic-

tionary with per-image labels. A ZSL classification accu-

racy of 26.5% is obtained by our model with NN as classi-

fier, while with exactly the same features, the DAP and IAP

results in [18] are 16.8% and 16.9% respectively - about

10% lower than ours.

Attribute prediction w/ and w/o domain adaptation. The

attribute prediction accuracy on the target data of our model

with and without domain adaptation is evaluated using the

AUC metrics as in [18] . Without domain adaptation, the

results on AwA, CUB, aPascal-aYahoo are 65.5%, 54.1%,

and 56.7%, respectively, whereas the results with domain

adaptation are 69.1%, 57.8%, and 59.2%, respectively. This

suggests that domain adaptation leads to better attribute pre-

diction accuracy, which in turn contributes to the better ZSL

performance.

5. Conclusions

We have proposed a novel ZSL framework based on

regularised sparse coding. Compared with most existing

ZSL methods that perform naive transfer, our model is es-

sentially an unsupervised domain adaptation model which

learns a projection function from a visual space to a seman-

tic embedding space using both labelled source and unla-

belled target data. Extensive comparative evaluations vali-

date the advantages of our model over the state-of-the-arts.
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