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a b s t r a c t 

Existing neural architecture search (NAS) methods usually explore a limited feature-transformation-only 

search space, ignoring other advanced feature operations such as feature self-calibration by attention and 

dynamic convolutions. This disables the NAS algorithms to discover more advanced network architectures. 

We address this limitation by additionally exploiting feature self-calibration operations, resulting in a 

heterogeneous search space. To solve the challenges of operation heterogeneity and significantly larger 

search space, we formulate a neural operator search (NOS) method. NOS presents a novel heterogeneous 

residual block for integrating the heterogeneous operations in a unified structure, and an attention guided 

search strategy for facilitating the search process over a vast space. Extensive experiments show that 

NOS can search novel cell architectures with highly competitive performance on the CIFAR and ImageNet 

benchmarks. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Recent advances of Neural Architecture Search (NAS) are re- 

arkable in challenging tasks, e.g. image classification [1,2] , object 

etection [3] , and semantic segmentation [4,5] , greatly alleviating 

he demands for human knowledge and interventions [6,7] by au- 

omating the laborious process of designing neural network archi- 

ectures. One common scheme for the standard proxy-based neu- 

al architecture search methods [8–10] is to factorise the search 

pace via repeatedly stacking the same cell structure, within which 

 computing block generates an output tensor F k by combining the 

ransformations of two input feature tensors F i and F j as follows: 

 k = o i → k ( F i ) � o j→ k 
(
F j 

)
s.t. i < k & j < k, (1) 

here o i → k and o j→ k are the i th and jth primitive operations for 

eature transformation, selected from a candidate operation set O, 

nd � is the element-wise addition. Existing NAS methods use 

nly the standard feature learning/transformation operations (convo- 

ution, pooling and identity mapping) as the building components. 

Besides, extensive studies [11–16] have proven that other ad- 

anced operations for feature self-calibration , such as attention 
∗ Corresponding author. 

E-mail addresses: w.li@qmul.ac.uk (W. Li), s.gong@qmul.ac.uk (S. Gong), 

iatian.zhu@surrey.ac.uk (X. Zhu) . 

s

w

i

f

ttps://doi.org/10.1016/j.patcog.2022.109215 

031-3203/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
earning and dynamic convolutions , can bring great benefits for rep- 

esentation learning. For example, Hu et al. [11] proposes Squeeze- 

nd-Excitation Networks to explicitly model inter-dependencies 

etween channels by learning channel-wise self-attention. Jia et al. 

14] presents Dynamic Filter Networks to generate context-aware 

lters for increasing the flexibility and adaptiveness of networks. 

owever, these useful feature calibration elements have never been 

ell exploited in NAS, significantly limiting the potentials of NAS 

hich aims to automatically discover more sophisticated and ad- 

anced network architectures without human engineering. 

In this work, we aim to address this limitation by extending 

he search space of NAS with feature self-calibration operations 

or scaling up the search boundary. This makes a heterogeneous 

earch space . Consequently, the way of feature tensor interaction 

nd combination is dramatically diversified, from the conventional 

ddition operator � only to the combination of addition �, multi- 

lication � for attention modelling, and dynamic convolution � . In 

his regard, we call the proposed method Neural Operator Search 

NOS). 

Such a search space enhancement is critical since NAS is en- 

bled to explore stronger and previously undiscovered network ar- 

hitectures, which opens a door to potentially take the NAS re- 

earch to the next level. In the no free lunch saying, this also comes 

ith two new challenges: (i) It is non-trivial and more challeng- 

ng to assemble such heterogeneous tensors and operations (i.e. 

eatures, attentions and dynamic weights) in a unified comput- 
under the CC BY-NC-ND license 
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ng block, as compared to the conventional homogeneous feature- 

ensor-to-feature-tensor transformation; (ii) The search space in- 

reases exponentially which leads to a much harder NAS problem. 

o address the first challenge, we formulate a heterogeneous opera- 

or cell characterised by a novel heterogeneous residual block. This 

lock, formulated in a residual learning spirit [6] , is designed spe- 

ially for fusing all the different types of tensors and operations 

ynergistically. To solve the second challenge, we propose leverag- 

ng the attention transfer [17] idea to facilitate the search behaviour 

cross this significantly larger network space via following the at- 

ention guidance of a pretrained teacher model. As we will show, 

his guidance not only makes the search more efficient but also 

mproves the search result. 

We make three contributions in this work: 

1. We present a novel heterogeneous search space for NAS char- 

acterised by richer primitive operations including both con- 

ventional feature transformations and newly introduced feature 

self-calibration. This breaks the conventional selection limit of 

candidate neural networks and enables the NAS process to find 

stronger architectures, many of which are impossible to be dis- 

covered in the conventional space. This opens new territories 

for supporting stronger NAS algorithms and new possibilities 

for most expressive architectures ever to be revealed. 

2. We formulate a novel Neural Operator Search (NOS) method 

dedicated for NAS in the proposed heterogeneous search space, 

with a couple of key designs – heterogeneous residual block for 

fusing different types of tensor operations synergistically and 

attention guided search for facilitating the search process over 

a vast search space more efficiently and more effectively. 

3. With extensive comparisons to the state-of-the-art NAS meth- 

ods, the experiments show that our approach is highly compet- 

itive on both CIFAR and ImageNet-mobile image classification 

tests. 

. Related work 

Neural Architecture Search. Since the seminal work by Zoph 

nd Le [1] , neural architecture search has gained a surge of inter- 

st, effectively replacing laborious human designs by the computa- 

ional process. From the strategy point of view, NAS methods can 

e categorised into two types: (1) proxy-based [1,8–10,18–25] and 

2) proxy-less [26–31] NAS. Specifically, to alleviate the compu- 

ational cost during search, the proxy-based NAS methods search 

or building cells on proxy tasks, with one or more of following 

ompromised strategies: starting with fewer cells; using a smaller 

ataset (e.g. CIFAR-10); learning with fewer epochs. Then, to trans- 

er to the large-scale target task, one can build a network by stack- 

ng searched cells without further exploration. However, suffering 

rom lacking of directness and specialisation, the searched cells by 

roxy-based NAS methods are not guaranteed to be optimal on the 

arget task. In contrast, proxy-less NAS methods directly learns ar- 

hitectures on a target task by starting with an over-parameterised 

etwork ( supernet ) that contains all possible paths, in which the 

edundant paths are pruned to derive the optimised architecture. 

otwithstanding significantly better results than proxy-based ap- 

roaches, proxy-less NAS methods require massive computational 

ost and GPU memory consumption, due to learning with the vast- 

ize supernet . From the optimisation point of view, existing NAS 

ethods usually fall into three groups: reinforcement learning (RL) 

ased methods, evolutionary algorithm (EA) based methods, and 

radient differentiable (GD) methods. In particular, RL-based NAS 

ethods [1,8,27] control the selection of architecture components 

n a sequential order with policy networks. EA-based NAS meth- 

ds [32–35,35,36] employ the validation accuracies to guide the 

volution of a population of initialised architectures. RL- and EA- 
2 
ased NAS methods usually suffer from low efficiency and high 

omputational resource demand, due to the fundamental searching 

hallenge in a discrete space. In contrast, GD-based NAS methods 

10,37–39] conduct searching over a continuous space by relax- 

tion or mapping, substantially reducing the search cost to a few 

PU days. Also, beyond studying optimisation and search strate- 

ies, recent NAS studies have extended towards memory efficiency 

18] , cost-effectiveness [19] , and operation fairness [21,25] . Whilst 

arying in the algorithmic aspects, all these works commonly ex- 

lore the feature-transformation-only search spaces without more 

iverse and advanced operations as we investigate here. To show 

he NAS potential of the proposed richer search space with self- 

alibration learning operations, we take the efficient proxy-based 

D optimisation due to the resource constraint. 

Neural Operator. Most of existing NAS works 

1,8,10,27,37,38] optimise in a feature feature-transformation- 

nly search space, considering the element-wise addition �

perator alone. Recently, some NAS methods attempt to search 

ith more complex neural operators. For example, van Wyk and 

osman [40] incorporate various mathematical operators in search 

pace using efficient evolutionary search for image restorations. 

ozejko et al. [41] consider additional scalar multiplication op- 

rator and channel concatenation for searching image denoising 

rchitectures. In this work, we instead focus on exploring self- 

alibration operations in NAS search space for deep convolutional 

etworks. Self-calibration is a type of mechanism enabling a 

etwork to dynamically perform input-conditional self-adjustment, 

hich has been studied extensively in both the computer vision 

11,14,42,43] and natural language processing (NLP) literature 

15,44] . There are two typical paradigms of self-calibration: 

elf-attention learning and dynamic convolutions , realised via an 

lement-wise multiplication operator � and a dynamic convolution 

perator � , respectively. Despite showing significant efficacy, 

elf-calibration is only exploited independently after architecture 

and-design [11] or auto-search [27] . We move a step further by 

ully exploring the potential of self-calibration along with feature 

ransformation in joint optimisation, bringing a richer search space 

or neural architecture search. A few prior works also consider 

eterogeneous learning with application on domain adaptation 

45] and graph neural networks [46] . In contrast, we focus on 

earching heterogeneous neural operators within a NAS search 

pace. 

Knowledge Distillation. There are recent works that use 

nowledge distillation to help computer vision and NLP tasks. 

hree types of knowledge are usually considered in distillation: 

eatures [47,48] , attention [17,49] , and predictions [50] . We lever- 

ge the attention distillation with a different objective – alleviat- 

ng the intrinsic training-test discrepancy issue of the proxy-based 

AS strategy, particularly with a more expressive search space. This 

epresents a novel exploitation of attention distillation [17] . 

. Method 

In this section, we start by formulating a heterogeneous search 

pace for NAS ( Section 3.1 ), followed by a dedicated heterogeneous 

perator cell to enable composing the heterogeneous operations in 

 unified computing block with synergistic interaction and cooper- 

tion ( Section 3.2 ). To overcome the intrinsic architecture discovery 

hallenges from more expressive search space, we further develop 

n attention guided search scheme ( Section 3.3 ). 

.1. Heterogeneous search space 

To enrich the NAS search space so that more advanced net- 

ork architectures can be discovered, we introduce a heteroge- 

eous search space A that considers three different types of rep- 
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Fig. 1. Structure of the proposed dynamic convolutions for image classification. �

denotes matrix multiplication. 
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esentation learning capabilities: (1) Feature transformations ; (2) 

ttention learning ; and (3) Dynamic convolutions . More concretely, 

e form three sets of primitive computing operations that pro- 

uce features, attentions and dynamic weights , respectively. This 

ovel search space generalises the conventional counterpart which 

s limited to the first type of operations [8,10] , and incorporates 

he self-calibration learning capabilities (i.e. the second and third 

ypes) in NAS. Importantly, while the search space changes, the 

eneric search strategies still apply therefore being largely open 

or collaborating with existing NAS methods. For instance, in the 

roxy-based NAS strategy we may first search for a computing 

ell with heterogeneous operations as the building block and then 

orm the final network architecture by sequentially stacking multi- 

le such cells layer-by-layer. 

Next, let us describe the heterogeneous primitive operation set 

which consists of the following three disjoint subsets: O f , O a 

nd O d , along with their aggregation or application operators. 

Feature Transformation Operations O f . We adopt the feature 

ransformation/learning operation set O f same as in [10,51] , in- 

luding the following 7 operations: 3 × 3 and 5 × 5 separable con- 

olutions, 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 av- 

rage pooling, 3 × 3 max pooling, and identity. Every operation 

 f ∈ O f takes as input a feature tensor and outputs another feature 

ensor, i.e. homogeneous feature-tensor-to-feature-tensor transfor- 

ation. For multiple feature tensor aggregation, the element-wise 

ddition operator � is typically used. 

Attention Learning Operations O a . Inspired by recent designs 

f attention learning modules [11,42,43] , we form the O a by con- 

idering two types of attention learning prototypes: spatial-wise 

nd channel-wise attentions. Specifically, a spatial-wise attention 

peration learns a saliency map for an input feature tensor in or- 

er to calibrate the importance of different spatial positions. In 

ontrast, a channel-wise attention operation produces a vector of 

caling factors from the aggregated global context of an input ten- 

or for adaptively calibrating the channel dependency. To enforce 

ttentive calibration on feature tensor, the element-wise multi- 

lication operator � is a typical choice for both spatial-wise and 

hannel-wise attentions. 

Dynamic Convolution Operations O d . Dynamic convolutions, 

esigned for the sake of self-adaptation, generate dynamic kernel 

eights in accordance with the input feature tensor. It is often in 

orm of depth-wise separable convolution as the feature transfor- 

ation operation. Tailored for either NLP or dense prediction tasks, 

xisting dynamic convolution designs [14,15] are not suitable for 

mage classification with different problem nature. It hence needs 

o be reformulated in order to be effective for learning discrimina- 

ive image representations. We consider two design principles: (i) 

tructurally lightweight whilst (ii) functionally strong and powerful 

ith great modelling capability. 

To that end, we present a novel dynamic convolution struc- 

ure specialised for cost-effective image classification, as shown in 

ig. 1 . Concretely, it consists of three compact modules composed 

n a unified cooperation: (a) a bottleneck module, to compress an 

nput feature tensor by a ratio of r; (b) a kernel transform module, 

o learn latent representations with a kernel dimension of k × k ; 

c) a kernel decode module, to read out the dynamic kernel weights 

ith the channel dimension same as the input feature tensor. This 

esign is motivated, in part, by the long-range dependency mod- 

lling [52,53] and global context aggregation [11,54] , elegantly inte- 

rating their merits via a unified formulation. For the output of dy- 

amic convolutions, we consider two common kernel sizes: 3 × 3 

nd 5 × 5 . In a depth-wise manner, we apply a standard or dilated

onvolution operator � to transform the input feature tensor. It is 

oteworthy to point out that, this type of convolutional kernel is 

pecific for each feature tensor of a particular image sample (i.e. 

ynamic), rather than learned from a training dataset and fixed for 
3 
ll the input samples (i.e. static) as the conventional convolutional 

perations in the feature transformation set. 

.2. Heterogeneous operator cell 

Due to different natures of heterogeneous computing capabil- 

ties, a unification structure is needed for composing the primi- 

ive operations O = O f ∪ O a ∪ O d and aggregation/application op- 

rators C = { �, �, � } in such a way that their representation

earning potentials can be well mined. To that end, we formu- 

ate a heterogeneous operator cell , a directed acyclic graph (DAG) 

 = (V, E ) , joining conventional feature transformations and pro- 

osed self-calibration operations synergistically. 

Formally, a heterogeneous operator cell consists of N ordered 

eature (tensor) nodes V = { F k | , 1 < = k < = N} . Following [9] , F 1 and

 2 are the outputs from the previous cells regarded as two input 

odes , { F k } N−1 
k =3 

denotes the inner nodes that perform computation, 

nd the Nth node F N is the cell output node formed as the concate- 

ation of all the inner nodes, i.e. F N = concat ({ F k } N−1 
k =3 

) . The edge 

 

i → k = (i, k ) ∈ E specifies the connection between the i th and k th

odes (the information flow i → k ), associated with a specific op- 

ration o i → k selected from the heterogeneous primitive operation 

et O. The key is to design a computing block for the inner nodes 

ith heterogeneous computations. 

Heterogeneous Residual Block. It is non-trivial to design a 

eterogeneous computing block due to being not straightforward 

eature-tensor-to-feature-tensor transformation as in the conven- 

ional homogeneous operation. It involves self-calibrating the input 

eature tensor itself in addition to the homogeneous feature trans- 

ormation. To facilitate adding the extra capacity, we formulate a 

eterogeneous residual block (see Fig. 2 ) characterised by a sur- 

ogate node k ′ in the computing block associated with each inner 

ode k , for enabling richer feature tensor manipulations. This is in 
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Fig. 2. Heterogeneous Residual block for formulating the inner node computation. 

(a) First-tier individual computation; (b) Second-tier collective computation. 
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 residual learning spirit [6] , allowing to conduct self-calibration 

eliably. 

Moreover, we design a two-tier computing hierarchy: the first 

ier for individual computation per input feature tensor to cap- 

ure the specificity, and the second tier for collective computation 

n the set of all the input feature tensors as a whole to capture

he intrinsic structural relations between feature tensors and the 

lobal input properties. The two tiers are connected by the surro- 

ate node k ′ . 
Formally, we take as input all the previous nodes { F i | , i < k } ,

rocess them separately with heterogeneous operations, and com- 

ine the processed results by summation ( Fig. 2 (a)) as: 

 k ′ = 

∑ 

i<k 

o i → k ′ 
f ( F i ) , (2) 

 k ′ = 

∑ 

i<k 

o i → k ′ 
a ( F i ) , (3) 

 k ′ = 

{
o i → k ′ 

d ( F i ) 
}

i<k 
(4) 

here F k ′ , A k ′ , and D k ′ are the three types of intermediate out- 

utted tensors, i.e. features, attentions, and dynamic weights, re- 

pectively. These are subsequently aggregated into an intermediate 

alibrated tensor , i.e. the surrogate node F k ′ , using element-wise 

ddition in-between on feature self-calibration and transformation 

s: 

 k ′ = F k ′ ︸︷︷︸ 
f eature 

� ( F k ′ � A k ′ ) ︸ ︷︷ ︸ 
at tent ion 

�

∑ 

D k ′ ∈ D k ′ 
F k ′ � D k ′ 

︸ ︷︷ ︸ 
dynamic con v 

(5) 

ext, F k ′ is used as the input for the second-tier set-level collec- 

ive computation ( Fig. 2 (b)). Likewise, we consider the same three 

ypes of operations: 

 k = o k 
′ → k 

f ( F k ′ ) , (6) 

 k = o k 
′ → k 

a ( F k ′ ) , (7) 

 k = 

{
o k 

′ → k 
d ( F k ′ ) 

}
, (8) 
t

4 
nd form the inner node F k via further feature self-calibration and 

ransformation as: 

 k = F k ︸︷︷︸ 
f eature 

� ( F k � A k ) ︸ ︷︷ ︸ 
at tent ion 

�

∑ 

D k ∈ D k 
F k � D k 

︸ ︷︷ ︸ 
dynamic con v 

(9) 

n doing so, our heterogeneous residual block presents a two-tier 

ombinatorial operations structure for each inner node, resulting 

n a more expressive search space (see Section 4.2 ). 

.3. Attention guided search optimisation in a heterogeneous search 

pace 

To showcase the effectiveness of the proposed heterogeneous 

earch space and operator cell, we adopt the proxy-based NAS 

trategy, due to the computing resource constraints and the enor- 

ous search space. This search is done by constructing a small 

roxy network parametrised by �. 

Attention Guided Search. Compared with proxyless search 

trategy, proxy-based NAS is more efficient but relatively less op- 

imal due to not directly optimising the final network architecture. 

his training-test discrepancy problem can be worsened when the 

earch space provides more flexibility and combinatorial capabil- 

ty, such as the proposed space. To solve this obstacle, we propose 

ttention guided search, which optimises the proxy network in a 

nowledge distillation manner with an external guidance injected 

rom a pre-trained teacher network into the NAS process. Impor- 

antly, this can accelerate the search process by reducing the train- 

ng time of each proxy network. 

Specifically, we leverage the attention transfer idea [17] that 

ncourages a student (the proxy network in our case) to hierar- 

hically imitate a teacher’s hidden attention knowledge. Intuitively, 

his may benefit the search for self-calibration learning. Formally, 

et us denote a feature tensor at the jth stage of the teacher and

tudent network as F 
j 
T 

and F 
j 
S 
, separately. Attention transfer is re- 

lised by imposing an alignment loss function across the two net- 

orks as: 

 AT = 

1 

2 

∑ 

j∈J 
‖ 

x j 
S 

‖ x j 
S 
‖ 2 

− x j 
T 

‖ x j 
T 
‖ 2 

‖ 2 , (10) 

here x 
j 
S/T 

= v ec( 
∑ 

i | F j S/T 
(·, ·, i ) | 2 ) is the spatial-wise accumulated

eature vector. An overview of attention guided search is depicted 

n Fig. 3 . 

Optimisation. For NAS optimisation, we adopt the DARTS 

ethod [10] . In our context, we conduct the continuous relaxation 

ver all the possible heterogeneous operations O for making a con- 

inuous search space: 

 

i → j 
(x ) = 

∑ 

o∈O 

exp 

(
a 

i → j 
o 

)
∑ 

o ′ ∈O exp 

(
a 

i → j 
o ′ 

)o(x ) , (11) 

here an architecture vector a 

i → j 
o ∈ R 

| O | is used for each possible 

onnection i → j. We summarise the architecture vector of all the 

onnections as a matrix A = 

[
a 

1 , · · · , a 

| E | ] ∈ R 

| E | ×| O | . With this re- 

axation, we can jointly optimise the architecture parameters A and 

he network weights � in a fully gradient differentiable manner. 

Equipped with the proposed attention guidance search, the 

earch objective function is finally formulated as the following 

ilevel optimisation process: 

∗ = arg min �L train (�, A ) + λL AT (�, A ) , (12) 

 

∗ = arg min A L v al (�
∗, A ) + λL AT (�

∗, A ) , (13) 

here λ denotes the weighting hyper-parameter. For the first level 

q. (12) , we learn the optimal parameters �∗ for a given architec- 

ure A w.r.t a training objective L and the attention alignment 
train 
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Fig. 3. Overview of attention guided search. T i and S i ( i ∈ { 0 , 1 , 2 } ) denote the i th stage of the teacher and proxy (student) networks. 

Table 1 

Evaluating the feature self-calibration operations on CIFAR10 and CIFAR100 with Top-1 and Top-5 error rate ( % ). 

Model Type Kernels 

CIFAR10 CIFAR100 

FLOPS(M) #Params(MB) 
Top-1 Top-5 Top-1 Top-5 

ResNet-18 - - 4.95 0.22 23.61 7.16 555.42 11.17 

+ Dynamic 

Normal 
3 4.63 a 0.13 a 22.63 a 6.44 a + 3.85 + 0.03 

5 4.78 a 0.14 a 23.45 a 6.82 a + 7.62 + 0.04 

Dilated 
3 4.97 b 0.23 b 24.00 b 7.28 b + 3.85 + 0.03 

5 4.92 a 0.17 a 23.75 b 7.20 b + 7.62 + 0.04 

+ Attention 
Spatial 4.79 a 0.16 a 23.51 a 7.04 a + 1.08 + 0.01 

Channel 4.83 a 0.19 a 23.20 a 6.89 a + 0.40 + 0.15 

a Better than the baseline. 
b Worse than the baseline. 
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oss L AT . The second level Eq. (13) then explores the optimal archi- 

ecture A 

∗ over the heterogeneous search space A w.r.t a validation 

bjective L v al and L AT . For image classification, L train and L v al usu- 

lly take the cross-entropy loss function. 

Search Outcome. Once the above alternated optimisation is 

one, we derive an amenable cell architecture with heterogeneous 

perators. In practice, for each heterogeneous computing block we 

etain the top-2 strongest incoming operations with at least one 

eature transformation operation for the first-tier ( Fig. 2 (a)), and 

he top-1 strongest operation for the second-tier ( Fig. 2 (b)). 

. Experiments 

Datasets. We evaluated the proposed NOS method on image 

lassification using three common datasets. CIFAR10/100: Both CI- 

AR10 and CIFAR100 have 50K/10K train/test RGB images of size 

2 × 32 × 3 , categorised into 10 and 100 classes, respectively [55] . 

mageNet: We used the ILSVRC2012 version for large-scale image 

lassification evaluation, containing 1.28M training images and 50K 

alidation samples from 10 0 0 object classes [56] . 

We first conduct preliminary experiments on CIFAR10/100 to 

elect the heterogeneous primitive operations O. To test the effi- 

acy and transferability of NOS, we search the cell structures on 

IFAR10 only, and compare the performance with existing meth- 

ds on CIFAR10/100 and ImageNet. 

.1. Study of feature self-calibration operations 

We conducted a controlled experiment to test the introduced 

elf-calibration operations on CIFAR-10 and CIFAR-100. Specifically, 

or the proposed dynamic convolutions , we considered both normal 

nd dilated convolutions and two kernel sizes ( 3 × 3 and 5 × 5 ).

e adopted the channel-wise and spatial-wise attention learning . 

or the baseline model, we used ResNet-18 [6] with 4 stages in 

he backbone. To build a model with self-calibration, we added 

ach self-calibration operation at the stages 1, 2, 3 of ResNet-18, 

espectively. For fair comparison, we trained each model in the 

ame setting (see Appendix A ). In 1 , we summarised the model 

arameters and FLOPs in addition to the test set performance (er- 

or rates). We observed that: (1) Both attention operations and 
5 
ur normal dynamic convolutions outperform the baseline con- 

istently; (2) Adding dilated dynamic convolutions causes perfor- 

ance drop in most cases. We hence exclude it from the candi- 

ate set; (3) Very marginal FLOPs and parameters increase from 

hese self-calibration operations over the baseline, suggesting their 

igh cost-effectiveness. 

.2. Cell search 

Search Space. Following the setup of existing methods 

10,32,51,61] , we searched the convolutional architectures on CI- 

AR10. We constructed a small proxy network with 8 heteroge- 

eous operator cells, and two reduction cells at 1/3 and 2/3 of 

he total network depth for feature shape reduction. Figure 4 il- 

ustrates the general model architecture. As found out above, the 

eterogeneous primitive operation set O contains 11 operations in 

otal: 
∣∣O f 

∣∣ = 7 feature transformation operations, | O a | = 2 atten- 

ion learning operations, | O d | = 2 dynamic convolutions, respec- 

ively. We constructed the proposed heterogeneous operator cell 

 G = (V , E ) ) with | V | = 7 nodes (2 input nodes, 4 inner nodes and

 output node). So, all 4 heterogeneous residual blocks contain 

 

E | = 18 edges in total (14 first-tier connections and 4 second-tier 

onnections). To derive the final cell architecture, we kept 2 first- 

ier connections and 1 second-tier connection for each block. As a 

esult, there is a total number of 
∏ 4 

n =1 
(n +1) n 

2 × 11 3 ≈ 10 14 possible 

hoices, 5 orders of magnitude larger than the conventional size of 
 4 
n =1 

(n +1) n 
2 × 7 2 ≈ 10 9 as in [10,37,59] . 

Training. Following the setup of existing methods [10,32,51,61] , 

e searched the convolutional architectures on CIFAR10. We con- 

tructed a small proxy network with 8 heterogeneous operator 

ells, and two reduction cells at 1/3 and 2/3 of the total network 

epth for feature shape reduction (see Appendix C). We used 25K 

mages split from the training set for validation. We randomly ini- 

ialised the architecture parameters A ∈ R 

18 ×11 in the normal dis- 

ribution. We used a pre-trained PyramidNet-110 (bottleneck, α = 

4 ) [57] as the teacher model. We set the weight λ = 10 3 for at-

ention guidance loss L AT . After 25 epochs of training on the proxy 

etwork, we derived the final heterogeneous operator cells from 

he architecture matrix A . See Appendix A for more configurations 

or training the proxy and teacher networks. 



W. Li, S. Gong and X. Zhu Pattern Recognition 136 (2023) 109215 

Fig. 4. ( Left ) The overall model architecture for CIFAR-10 and ImageNet, consisting of repeated Normal Cells and Reduction Cells. M is the stacking choice for the number of 

Normal Cells. Each cell contains 4 blocks. ( Right ) An example of two-tier block construction in cell: Each block takes two input features ( F i , F j ) from previous nodes; The 

operator ( ? ) in a block is determined by the choices of two operations ( o i → k ′ , o j→ k ′ ) in the first-tier; An extra operation ( o k 
′ → k ) is selected in the second-tier. 

Fig. 5. Normal cell and reduction cell searched on CIFAR-10. f 0 : sep _ conv _ 3x3 , f 1 : sep _ conv _ 5x5 , f 2 : dil _ conv _ 3x3 , f 4 : max _ pooling , f 6 : identity , a 0 : spatial _ attention , a 1 : 

channel _ attention , d 0 : dynamic _ conv _ 3x3 , d 1 : dynamic _ conv _ 5x5 .. 
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Table 2 

Comparisons with the state-of-the-art architectures obtained by proxy-based NAS 

methods on CIFAR10 and CIFAR100 with Top-1 error rate ( % ). 

Architecture Error (% ) Params Search Cost 

CIFAR10 CIFAR100 (M) GPUs Days 

PyramidNet [57] a 3.92 20.11 2.5 - - 

ENAS [8] 2.89 - 4.6 1 0.5 

DARTS(1st) [10] 3.00 ±0.14 - 3.3 1 1.5 

DARTS(2nd) [10] 2.76 ±0.09 17.54 3.3 1 4.0 

SNAS (moderate) [37] 2.85 ±0.02 - 2.8 1 1.5 

GHN [58] 2.84 ±0.07 - 5.7 1 0.84 

GDAS [59] 2.93 18.38 3.4 1 0.84 

BayesNAS [60] 2.81 ±0.04 - 3.4 1 0.2 

ASNG [61] 2.83 ±0.14 - 3.9 1 0.11 

P-DARTS [20] 2.50 16.55 3.4 1 0.3 

FairDARTS [21] 2.54 - 2.8 1 3 

Random Baseline b 3.85 21.66 2.4 - - 

NOS (best) 2.53 16.21 2.6 1 0.35 

NOS (average) 2.67 ±0.06 16.72 ±0.24 2.6 1 0.35 

a The teacher model. 
b Best architecture among 30 random samples. 

o

o

w

w

t

N

g  

a

b

The search on CIFAR10 took only 8.4 h using a single NVIDIA 

esla V100 GPU. The searched heterogeneous operator cells by NOS 

s shown in Fig. 5 , in which the self-calibration operators � and 

 appear in both first-tier and second-tier. For example, there are 

wo attention operations in first-tier and two dynamic convolutions 

n second-tier in the normal cell. 

.3. Architecture evaluation 

CIFAR. To measure the final image classification performance 

f the searched heterogeneous operator cells on CIFAR10 and CI- 

AR100, we created an evaluation network with 20 cells, 36 ini- 

ial channels, and an auxiliary tower with loss weight 0.4. See 

ppendix A for more configurations for training the evaluation net- 

ork. Due to high variance of results on CIFAR, we conducted 10 

ndependent runs and reported both the best and average results. 

e summarised the results of NOS and the state-of-the-art proxy- 

ased NAS methods 1 in Table 2 . The comparisons show that: (1) 

OS achieves the second best result on CIFAR10, whilst enjoying 

he smallest model parameters (only 2.6M). This suggests signifi- 

ant cost-effectiveness and compactness advantages of our method, 

n comparison to FairDARTS [21] and P-DARTS [20] . (2) Despite a 

ignificantly larger search space ( 10 14 vs. 10 9 in [10,37,59,61] ), NOS 

till yields high cost-effectiveness (only 0.35 GPU day). (3) Further, 

OS reaches the best result on CIFAR100 by directly transferring 

he CIFAR10 searched network, outperforming P-DARTS [20] and 

DAS [59] significantly. This challenging cross-dataset test indi- 

ates a superior transferability of the network searched by NOS. 

ImageNet. To evaluate the transferability of architecture dis- 

overed by NOS on the large-scale ImageNet, we used the mobile 

etting same as in [10,37,59] , where the number of multiply-add 
1 In our evaluation context, we primarily aim to accurately evaluate the effect 

f search space. To this end, we selectively compared with a set of more related 

tate-of-the-art NAS methods, rather than exhaustively. For instance, we excluded 

roxylessNAS [26] due to that it uses a different search strategy with a supernet 

orthogonal to the search space factor). 

f

F

P

o

a

D

6 
perations is restricted to be less than 600M at the input size 

f 224 × 224 . Specifically, we constructed an evaluation network 

ith 14 cells and 48 initial channels. An auxiliary tower with loss 

eight 0.4 was also applied. See Appendix A for more training de- 

ails. Table 3 shows the ImageNet results in the mobile setting. 

otably, compared to other state-of-the-art proxy-based NAS using 

radient optimisation (GHN [58] , DARTS [10] , SNAS [37] , GDAS [59] ,

nd BayesNAS [60] ), the network searched by NOS on CIFAR10 can 

e successfully transferred. NOS discovers a cell structure that per- 

orms better with higher efficiency and lighter model (only 440M 

LOPs). In addition, compared with latest state-of-the-art such as 

-DARTS [20] and FairDARTS [21] , NOS achieves a strong trade- 

ff in terms of model performance, size and search cost, despite 

 much larger search space ( 10 14 vs. 10 9 with P-DARTS and Fair- 

ARTS). 
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Table 3 

Comparisons with the state-of-the-art proxy-based architectures on 

ImageNet-mobile. 

Architecture Test Err. (%) Params ×+ Search Cost 

top-1 top-5 (M) (M) (GPU-days) 

GHN [58] 27.0 8.7 6.1 569 0.84 

DARTS [10] 26.7 8.7 4.7 574 4.0 

SNAS [37] 27.3 9.2 4.3 522 1.5 

GDAS [59] 26.0 8.5 5.3 581 0.84 

BayesNAS [60] 26.5 8.9 3.9 - 0.2 

P-DARTS [20] 24.4 7.4 4.9 557 0.3 

FairDARTS [21] 24.4 7.4 4.4 440 3 

NOS 25.8 8.1 4.0 440 0.35 

Fig. 6. The train and val set accuracies on CIFAR10. 

Table 4 

Testing attention guided search (AGS). w/o: with- 

out, w/: with. 

AGS Test Error (% ) 

CIFAR10 CIFAR100 

w/o 3.44 18.80 

w/ 2.53 16.21 
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.4. Further analysis 

We evaluated attention-guided search (AGS) on CIFAR10/100 

y comparing a NOS variant without attention transfer loss. The 

ame training setting was used ( Appendix A ). We used a pretrained 

yramidNet-110 as the teacher. Table 4 shows that learning with 

ttention guidance can significantly benefit the NOS search pro- 

ess. 

Distillation Effect. We examined the effect of knowledge dis- 

illation in the proposed Attention Guided Search (AGS). We con- 

ucted this analysis on CIFAR10. In this evaluation, we compared 

hree methods: (1) Vanilla Search: Using the original DARTS search 

ethod; (2) Distillation Only: Using the attention transfer loss for 

raining the proxy network only; (3) AGS: The proposed method 

full). We tracked the model performance on both training (train) 
Fig. 7. Evaluating the heterogeneous operation

7 
nd validation (val) data sets. Figure 6 shows that (i) knowledge 

istillation brings a positive performance gain over the vanilla 

ARTS and (ii) using attention guidance for the network search can 

urther improve the searched architecture. This suggests that distil- 

ation is effective to alleviate the architecture training-test discrep- 

ncy issue involved in the proxy-based NAS. 

Space Generality. We tested the general effect of the proposed 

ttention Guided Search (AGS) using the original DARTS search 

pace ( O f + zero operation) on CIFAR10. During the search pro- 

ess, we followed the same settings as DARTS with the first-order 

ptimisation. We obtained the error rates: 3.00 ± 0.14 (DARTS) vs. 

.92 ± 0.05 (DARTS + AGS). This suggests a general efficacy of AGS 

ver different search spaces. 

Operation Effect. We further evaluated the heterogeneous op- 

ration effect using different search space combinations ( O f , O f ∪ 

 a , O f ∪ O d , and O f ∪ O a ∪ O d ). Here, AGS with the first-order op-

imisation is applied for the search process. Figure 7 shows that: 

1) Both attention learning operations O a and dynamic convolu- 

ion operations O d can bring non-trivial performance gain over fea- 

ure learning operations; (2) The combination of O a and O d gives 

urther accuracy boost. This validates the efficacy of our proposed 

eterogeneous operation search space. 

. Conclusion 

In this work, we presented Neural Operator Search (NOS), char- 

cterised by a heterogeneous search space for neural architecture 

earch (NAS). Specifically, NOS further introduces dynamic convo- 

ution and attention learning operations on top of the conventional 

eature transformation operations. This proposed search space ex- 

ansion enables NAS to discover more expressive and previously 

ndiscovered architectures, significantly expanding the search hori- 

on and enriching the possible search outcomes. Moreover, we in- 

roduced a heterogeneous operator cell to integrate these different 

perations synergistically. To facilitate the learning process, we fur- 

her proposed an attention guided search mechanism in a distilla- 

ion manner. Extensive evaluations have validated the superiority 

f our method over a wide range of state-of-the-art NAS models 

n the standard image classification tasks. 

Limitation. This work has a couple of limitations. First , we fo- 

us on studying the heterogeneous search space of NAS while leav- 

ng the heterogeneous model scaling behaviour to future work. Sec- 

nd , we mainly evaluate the quality of searched architectures by 

ne-tuning on ImageNet-1K image classification following existing 

orks. The architectural transferability on other tasks (e.g., object 

etection and segmentation) may need further investigation. 
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 search space on CIFAR10 and CIFAR100. 
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ppendix A. Details of training configurations 

1. CIFAR 

ResNet-18 and PyramidNet-110 (bottleneck, α = 84 ). We fol- 

owed the same training details as [57] . We trained these models 

or 300 epochs with batch size 32. The learning rate was initialised 

s 0.025, which was decayed by 10 every 30 epochs. The standard 

GD optimiser with momentum of 0.9 was employed. We set a 

eight decay value of 1 × 10 −4 to avoid overfitting. The data aug- 

entations include horizontal flip and random crop. 

Cell Search. For network parameters � of proxy network, we 

sed SGD with an initial learning rate 0.025 and set the momen- 

um value as 0.9. This learning rate was decayed to 0 with a co- 

ine scheduler. A weight decay value of 3 × 10 −4 was imposed to 

void over-fitting. For learning architecture matrix A , we used the 

dam optimiser with a fixed learning rate value 6 × 10 −4 and set 

he weight decay to 1 × 10 −3 . 

Cell Evaluation. The evaluation network was trained from 

cratch directly for 600 epochs with batch size 128. Note that, 

he attention transfer was not involved for training. We set the 

eight decay values for CIFAR-10 and CIFAR-100 to 3 × 10 −4 and 

 × 10 −4 individually. The standard SGD optimiser with a momen- 

um of 0.9 was applied. The initial learning rate was 0.25, decayed 

o 0 with a cosine scheduler. Following existing works [8–10,32] , 

e performed two additional enhancements: the cutout regulari- 

ation [62] with length 16 and the drop-path [63] of probability 

.3. 

2. ImageNet 

We trained the evaluation model for ImageNet using SGD opti- 

iser for 300 epochs with batch size 512. We initialised the learn- 

ng rate as 0.25 and reduced it to 0 by a linear scheduler. Learning

ate warmup [64] was applied for the first 5 epochs to deal with 

he large batch size and learning rate. 
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