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Abstract

An integrated system for the acquisition, normalisation and recognition of moving
faces in dynamic scenes is introduced. Four face recognition tasks are defined and it
is argued that modelling person-specific probability densities in a generic face space
using mixture models provides a technique applicable to all four tasks. The use of
Gaussian colour mixtures for face detection and tracking is also described. Results
are presented using data from the integrated system.

Key words: Face recognition, Biometrics, Gaussian mixtures, Colour models.

1 Introduction

Face recognition in general and the recognition of moving people in natural
scenes in particular, require a set of visual tasks to be performed robustly.
These include (1) Acquisition: the detection and tracking of face-like image
patches in a dynamic scene, (2) Normalisation: the segmentation, alignment
and normalisation of the face images, and (3) Recognition: the representation
and modelling of face images as identities, and the association of novel face
images with known models. These tasks seem to be sequential and have tradi-
tionally often been treated as such. However, it is both computationally and
psychophysically more appropriate to consider them as a set of co-operative
visual modules with closed-loop feedbacks. In order to realise such a system,
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an integrated approach has been adopted which will perform acquisition, nor-
malisation and recognition in a coherent way. Figure 1 illustrates the system
design. Images of a dynamic scene are processed in real-time to acquire nor-
malised and aligned face sequences. Typical examples can be seen in Figure 2.
In essence, this process is a closed-loop module that includes the computation
and fusion of three different visual cues: motion, colour and face appearance
models. Face tracking based upon motion and a face appearance model has
been addressed in greater detail elsewhere [1,2]. The use of colour is described
here. The remainder of this paper then focuses upon person identification
within such a framework. Complementary to recognition, appearance-based
mechanisms for real-time face pose estimation have been developed which can
be used to improve the robustness of detection and alignment [3].
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Fig. 1. A framework for face recognition in dynamic scenes.

Much research effort has been concentrated on face recognition tasks in which
only a single image or at most a few images of each person are available. A
major concern has been scalability to large databases containing thousands
of people (e.g. [4]). However, large intra-subject variability casts doubt upon
the possibility of scaling face recognition, at least in this form, to very large
populations. A form of biometric “facial” recognition using the iris is better
suited to such populations [5]. In contrast, the face recognition tasks con-
sidered in this paper are characterised by the availability of many images
of relatively small groups of individuals. Such data arise from the type of



integrated approach to face recognition in dynamic scenes illustrated in Fig-
ure 1. Since these tasks involve recognition of fewer people with more images,
they might appear initially to be simpler. However, applications of the “many
people with few images” variety typically use images captured in highly con-
strained conditions. In contrast, the tasks considered here require recognition
to be performed using sequences acquired and normalised automatically in
poorly constrained dynamic scenes. These are characterised by low resolution,
large scale changes, variable illumination and occasionally inaccurate cropping
and alignment. Recognition based upon isolated images of this kind is highly
inconsistent and unreliable. However, the poor quality of the data can be
compensated by accumulating recognition scores over time. Many images of a
person can be acquired in a few seconds. Given sufficient data, it becomes pos-
sible to model class-conditional structure, i.e. to estimate probability densities
for each person.

In section 2, the use of Gaussian mixture colour models for face detection and
tracking is described. In section 3, four face recognition tasks are defined and
possible approaches to each of these are discussed. It is argued that estimating
class-conditional densities in a “face space” provides appearance-based models
of identity suited to all four tasks. Gaussian mixtures are then presented and
evaluated for this purpose. Conclusions are drawn in section 6.

2 Locating and tracking faces using colour

A system for detecting and tracking faces was previously described [1,2]. It
combined motion detection by spatio-temporal filtering with an appearance-
based face model in the form of a neural net. Multiple person tracking was
performed using time-symmetric matching and Kalman filtering. In this sec-
tion, the use of colour as a cue for detection and tracking is described. Colour
provides a computationally efficient yet effective method which is robust un-
der rotations in depth and partial occlusions. It can be combined with motion
and appearance-based face detection.

Human skin forms a relatively tight cluster in colour space even when differ-
ent races are considered [6]. Figure 3 shows the colour distribution of three
faces in hue-saturation (H-S) space. Face colour distributions were modelled
as Gaussian mixtures of the form:

M

p(x) = >_p(x[5)P(j) (1)

j=1
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Fig. 2. Real-time tracking and normalisation in dynamic scenes using colour, motion
and neural nets based face appearance models. In the first sequence the system uses
a colour model to cope with large pose variations and partial occlusion whilst the
camera pans and zooms. In the second sequence, approximate body bounding bozes
are also shown along with aligned and scale-normalised faces.

The mixing parameter P(j) corresponds to the prior probability that the data,
x, was generated by component j. Each of the M mixture components, p(x|j),
is a Gaussian with mean p; and covariance matrix 3;. Given n face pixels x;,
i = 1...n, Expectation-Maximisation (EM) provides an effective maximum-
likelihood algorithm for learning a Gaussian mixture model [7]. An expectation
(E) step consists of evaluating the posterior probabilities P(j|x;) for each
mixture component. Let the sum of these probabilities be S; = Y21, P(j[x;).
A maximisation (M) step then updates the mixture components as follows:

-\ new S new 1 S y
J =1
new 12 new new|T ;
X = S. Dol — ] - [x — T P 1x) (3)
J =1

The E and M steps are iterated until convergence. If M = 1, the parameters
of the Gaussian are estimated directly.



Fig. 3. The tight clustering of skin colour for three different races is illustrated here.
The top row shows the face regions used to build the mizture models. The middle
row shows the colour distributions and mizture components plotted in H-S space.
The bottom row shows the probability density models in H-S space.

In practice, an H-S model of a single person functions well with other races.
The mixture model is used to assign a probability to each pixel in an image
and faces are detected by grouping suitably sized areas of high probability.

The tracking dynamics involve estimating the position of the object and the
size of a bounding box. This box provides a focus of attention for further
processing. The position and size of the box are found by computing the

mean m’ = (m,, m,) and standard deviations o* = (0, 0,) of the local colour

probability distribution within a rectangular search area centred on m‘~! in
the image domain at time ¢. The dimensions of this search area are determined
by scaling the dimensions of the bounding box at time ¢ — 1. The experiments
presented in this paper were performed with search areas 2 times the height

2
and width of the bounding box.



For a given frame t, the box position m' is estimated as an offset from the
position m'™!:

mtzm

1 P p(xg)(€ —m'™)
2¢ p(Xg)

(4)

where the sums are computed over the search region i.e. § ranges over all
image coordinates in the search region and x¢ is the colour point at image
position &. To improve accuracy, probabilities p(xé) are thresholded. Values
lower than the threshold are taken to be background and are consequently set
to zero in order to nullify their influence on the estimation of m? and o.

The size of the bounding box is estimated by computing the standard deviation
of the image probability density:

i | Zelpx{(€ - m) —m'}] )
- X p(xg)

Figure 2 shows a sequence of a face being tracked with a moving camera against
a cluttered background. The tracker’s ability to deal with changes in scale,
large rotations in depth and partial occlusion are all clearly demonstrated.

The colour-based tracking system has been implemented on a 200MHz Pen-
tium PC equipped with a Matrox Meteor frame grabber and a Sony EVI-D31
active camera. The camera can be driven by maintaining the mean position,
m, at the centre of the image. Tracking is performed at approximately 15
frames per second. Some problems are inevitably caused by large changes in
the spectral composition of scene illumination. It has been found necessary
to use at least two colour models, one for interior lighting and one for exte-
rior natural daylight. Adaptive colour models can be used to perform tracking
under varying illumination conditions [8].

3 Face recognition tasks

Given a database consisting of a set, S, of N known people, different face
recognition tasks can be envisaged. Four tasks are defined here as follows:

(1) Face classification: The task is to identify the subject under the assump-
tion that the subject is a member of S.
(2) Known/Unknown: The task is to decide if the subject is a member of S.



(3) Identity wverification: The subject’s identity is supplied by some other
means and must be confirmed. This is equivalent to task 2 with N = 1.

(4) Full recognition: The task is to determine whether or not the subject is
a member of S, and if so to determine the subject’s identity.

When considering appearance-based approaches to these tasks it is helpful
to know something of the topology of sets of face images in an image space.
The set of all faces forms a small number of extended, connected regions 2.
Furthermore, a face undergoing transformations such as rotation, scaling and
translation results in a connected but strongly non-convex subregion in the
image space [9]. Whilst these transformations might be approximately cor-
rected using linear image-plane transformations, large rotations in depth, il-
lumination changes and facial expressions cannot be so easily “normalised”.
Therefore, the set of images of a single face will form at least one and possibly
several, highly non-convex, connected regions in image space.

Face classification Known/Unknown

Face verification Full recognition

Fig. 4. Plotted in a hypothetical face space, F, are example faces from 3 different
people. Suitable decision boundaries are shown for the four recognition tasks.

Figure 4 illustrates the four recognition tasks defined above in a hypothetical
face space F, where F is assumed to contain all possible face images and to

3 A single connected region may not be sufficient because of certain binary prop-
erties of faces such as the presence or absence of glasses.



exclude all other images. Plotted in F are example faces for three different
people* . Suitable decision boundaries for performing the recognition tasks are
shown. The separability of face identities in F will depend upon the technique
used to model F. However, it is likely that each identity will form strongly non-
convex regions in this subspace. In the face classification task, all N classes
can be modelled. In contrast, the other three tasks all suffer from the need
to consider the class of unknown faces. Each task will now be discussed in
greater detail.

3.1 Fuace classification

The face classification task is an N-class classification problem in which all N
classes can be modelled. It can be tackled by collecting representative data for
each of the IV classes and applying one of many possible pattern classification
techniques. The probability of misclassifying a face = is minimised by assigning
it to the class Cy with the largest posterior probability P(Cy|x), where

p(x|Cy) P(Ck)

e

(6)

p(z) is the unconditional density, p(x|Cy) is the class-conditional density and
P(Cy) is the prior probability for class Cy. Since p(z) is the same for every class
it need not be evaluated in order to maximise posterior probability [10]. There-
fore, one approach to the classification task is to model the class-conditional
probability densities, p(z|C}), for each class. This approach is explored in this
work. An alternative approach is to estimate discriminant functions using, for
example, Linear Discriminant Analysis [11,12].

3.2 Face verification

Face verification can be treated as a 2-class classification problem. The two
classes Cy and C'; correspond to the cases where the claimed identity is true
and false respectively. In order to maximise the posterior probability,  should
be assigned to Cj if and only if

p(x|C1)P(Ch)

4 Several simplifications have been made here for illustrative purposes. Firstly, the
identities are likely to overlap significantly. Secondly, the space has high dimension-
ality and visualisation in two dimensions would in fact reveal little or no structure.
Thirdly, each identity has been shown as a single connected region whereas several
such regions may be required in reality.



Density p(z|C) represents the distribution of faces other than the claimed
identity. This is difficult to model but a simple assumption is that it is con-
stant over the relevant region of space, falling to zero elsewhere. In this case,
Inequality (7) is equivalent to thresholding p(x|Cy). Perhaps a more accurate
assumption is that the density p(x|C;) is smaller in regions of space where
p(z|Co) is large. If p(x|C1) is chosen to be of the form F[p(x|Cy)], where F is
a monotonically decreasing function, then this assumption is also equivalent

to thresholding p(x|C)). In this case, the threshold takes the form G~ [%g—‘l’ﬂ ,

where G(z) = F(z)/z. Since G is monotonic, G~} is unique® . Utilising only
data from class Cy, it is therefore reasonable to perform verification by thresh-
olding p(z|Cy).

In order to achieve more accurate verification, negative data, i.e. data from
class (', would need to be used in order to better estimate the decision bound-
aries. Only data which are “close” to Cj are relevant here. An iterative learning
approach can be used in which incorrectly classified unknown faces are selected
as negative data. Furthermore, the face images used to train the face detec-
tion network also provide a suitable source of negative examples for identity
verification [1].

3.3  Known/Unknown

This task can also be treated as a 2-class classification problem. The two
classes Cy and C; correspond to the cases where the subject is and is not a
member of the known group S, respectively. The methods discussed above for
face verification can be similarly applied to this 2-class problem.

A slightly different approach involves building an identity verifier for each
person in S. The known /unknown task is performed by carrying out NV identity
verifications. If the numerator in the threshold of Inequality (7) is the same
for all verifiers then they can be combined in a straightforward manner.

3.4 Full recognition

The full recognition task can be performed by combining N identity verifiers
similarly to the second approach described above for known/unknown.

5 This fact was pointed out by Bishop [13] in the context of neural network
validation.



4 Methods for face recognition tasks

The approach proposed in this work provides a recognition framework that
can be applied to any of the four tasks defined in Section 3. The main idea is
to model a class-conditional density for each person in a representation space
of relatively low dimensionality. Given such class-conditional densities, all four
recognition tasks can be performed in a well-founded, statistical way. However,
the method chosen to estimate these densities needs to be sufficiently general
in order to model the highly non-convex distributions generated by different
images of a face. It should also allow for a range of model complexity in order
to model people for whom a relatively small amount of data are available. As
more data are collected through recognition the model should be able to adapt
to capture the underlying distribution more accurately.

The method selected here for density estimation was Gaussian mixture models.
Modelling face classes with mixture models has several attractive characteris-
tics. Density estimation is performed in a semi-parametric way so that the size
of the model (number of mixture components) scales with the complexity of
the data rather than with the size of the data set. The method is sufficiently
general to model highly complex, non-linear distributions given enough data.
However, it can also be constrained in a straightforward manner to obtain well-
conditioned estimation given limited data. When classification is performed,
other models emerge as special cases of using Gaussian mixtures, e.g. nearest
neighbour and nearest mean classification.

4.1 Modelling identity using Gaussian miztures

Let each person k constitute a class Cy. A person’s identity is modelled by esti-
mating the class-conditional density, p(z|C%), from examples of that person’s
face. This density takes the form of a mixture of M components estimated
using the EM algorithm described in section 2:

p(z|Cy) = ;p(mlj)P(j) (8)

However, appearance-based face representations usually have high dimension-
ality and in practice fitting a mixture of Gaussians is often highly under-
constrained due to limited data and the “curse of dimensionality”. There are
a number of complementary approaches to making the modelling tractable.

Firstly, the number of parameters in the model can be reduced by constraining
the form and the number of Gaussian mixture components. In the most gen-
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eral case, each Gaussian, j, has a covariance matrix, ;, which is completely
determined by the data. If ¥; is constrained to be a diagonal matrix then
there are only 2d parameters to be determined, where d is the dimensionality
of the data. If X; = o, for some o; then the Gaussian is radially symmetric
and there are only d + 1 parameters to be determined. If ¥ = I then only the
mean must be estimated.

Secondly, the data set can be artificially enlarged by synthesising new wirtual
images for each person using models of possible variations of a face image. In
its simplest form, this approach consists of applying a set of simple transforma-
tions to the images e.g. small translations, scalings, rotations and mirroring
about the vertical axis. Noise can also be artificially added to the images.
Models of deformation have been employed for a more complex synthesis of
virtual views, e.g. [14].

Thirdly, the dimensionality of the face representation vectors can be reduced.
A simple way to reduce dimensionality in the image domain is to consider only
a restricted part of the face or to subsample the image. A significant reduction
in dimensionality is achieved by representing faces as vectors in the subspace
of faces F rather than as image vectors in the space of all possible images
although F can be difficult to model.

4.2 Modelling face space

Since the intrinsic dimensionality of face space, F, is much less than that of
the space of all images, Z, a significant reduction in dimensionality can be
obtained without loss of significant information provided that two criteria can
be met:

(1) The recognition algorithm only ever has to deal with correctly normalised
images of faces, i.e. face tracking provides perfect data.

(2) The subspace F is accurately modelled in such a way that separability
of identity is preserved.

A face tracking system has been developed that can largely fulfill the first cri-
terion by using a measure of confidence to discard nearly all the poorly aligned
face images [1]. However, there will always be some error in this process, par-
ticularly under demanding illumination conditions and with low resolution
images.

A representative data set containing a large number of different identities is
needed in order to build a generic model of the face space. In practice, a
specific approximation, Fg, is usually obtained from images in the set S of
N known people. When N is small, Fs is a poor approximation to F. If
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a specific model is used, it must be updated each time the set S changes.
Furthermore, any identity-specific models which make use of Fs must also be
updated. In contrast, a generic model need never be updated. An important
point here is that face classification is easier to perform in Fg than in F while
identity verification, known/unknown and full recognition are best performed
in a generic face space, F.

In theory, if exact pointwise correspondences can be established between all
face images, face space can be accurately modelled using linear vector spaces
[14]. In practice, establishing even a small set of feature correspondences be-
tween faces is highly problematic, especially at low resolution. In experiments
described in section 5, only approximately aligned frontal or near-frontal views
of faces are considered and linear models can provide reasonably accurate rep-
resentation [15]. Principal Components Analysis (PCA) has been used to ob-
tain face space models for face classification [16]. The models are computed
without the use of any identity class information. PCA is therefore suitable for
data sets with only a few example images per person and (or) large numbers
of people. Linear discriminant analysis has also been used (e.g. [17]) and can
preserve class linear separability when applied to data sets with many images
per person and relatively few people. It is therefore suitable for computing
specific face space models for face classification using many training images of
a few people.

In experiments described in the next section, a large data set containing many
different people with only a few images per person was used to compute a
generic face space using PCA. First, a brief description is given of the PCA
“eigenface” methods used.

4.8 Normalised eigenfaces

Given n face images of size m = pxq pixels, a face eigenspace is calculated as
follows. Each image defines an m-dimensional column vector x. The mean, pu,
and the mxm covariance matrix, ¥, of the set of n face images are computed.
Let uj, 7 = 1...7n/, be the n’ eigenvectors of 3 which have the largest cor-
responding eigenvalues A;. The n’ eigenvectors are the principal components.
For an image, x, an n'-dimensional “pattern vector”, Q(x) = [wiws ... Wy,
can be computed by projection onto each of the eigenvectors u;:

wi=u,(x—p) j=1,....0 (9)
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Fig. 5. Example frames from tracked sequences. The face bounding box is overlaid
on each image. The extracted face images are shown inlaid.

This pattern vector can be normalised by the eigenvalues in order to give the
data equal variance along each principal component axis:

W1 Wa Wnpy

=|— = ... 1
Qnorm(x) )\1 )\2 /\n’] ( O)

Class-conditional densities can be modelled in a principal subspace by esti-
mating either P[Q2(x)|Ck] or P[Qnorm (x)|Ck]-

5 Experiments

This section describes experiments using Gaussian mixture models of identity.
Face image data were acquired and normalised fully automatically by the
face tracking system. The neural network model used to perform tracking was
trained using 9000 example face images rotated by +10° and scaled to 90% and
110% [1]. The normalised faces from the tracker therefore varied by at least
these amounts in scale and rotation. Since the aim of these experiments was to
compare methods for modelling identity rather than to optimise recognition
accuracy, no attempt was made to reduce these variations.
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Fig. 6. Subset of data (Left: training, Right: test).
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Face Person (% images correct) Total || Seq.

space 0|12 |3 |4 |5 ]6]|T7 % (Maj.)

Specific || 75 | 64 | 74 | 85 | 56 | 78 | 29 | 11 || 55.1 7
Generic || 57 | 67 | 66 | 20 | 13 | 72 | 25 | 29 || 43.6 4

Table 1

Test set results with generic and specific face space models using 40 principal com-
ponents. Identities were modelled by fitting a single radial Gaussian to each of the
8 people.

Eight subjects were tracked through relatively unconstrained indoor scenes as
they walked towards a fixed camera. Overhead lighting resulted in variations in
facial illumination. Figure 5 shows three examples from the tracking process.
The resolution of the area of the face tracked ranged from approximately
10 x 10 pixels when the subject was far from the camera to 80 x 80 pixels
when the subject approached the camera. Two normalised face sequences were
obtained for each subject. The first sequence of each subject was used for
training and the second sequence for testing. In total, there were 326 training
images and 296 test images. The number of training images per person varied
from 21 to 60 and the number of test images from 21 to 53. Figure 6 shows 10
of the images used to form the training and test sets for each of the subjects.

Face space was modelled by performing PCA on the training images. A specific
model was computed from the training set. A generic model was computed
using 644 of the images used to train a face detection neural network in the
tracking system. These images were highly suitable, having similar variations
in scale and rotation to the tracked data to be recognised. The training images
were projected onto the first n’ eigenvectors and each person’s identity was
modelled by estimating either P[Q2(x)|Ck] or P[Qporm(x)|C] with Gaussian
mixtures. The 8 mixture models’ parameters were stored along with the n'
eigenvectors and eigenvalues and subsequently used to perform classification
of the test sequences.

Initially, both a specific and a generic eigenspace were computed using the first
40 eigenvectors. Table 1 shows a comparison of face classification using the
specific and generic models. Identities were modelled by fitting a single radial
Gaussian to each person’s data. The percentage of images correctly classified
for each person along with the percentage of total images classified correctly
are given. Sequence classification results are also given based upon a majority
vote i.e. the sequence is classified as the person with the most images. The
result illustrates the fact that the use of a generic face space which could be
used to facilitate identity verification, known/unknown or full recognition, in
turn makes face classification more difficult.

A reduction in the dimensionality of the generic face space from 40 to 20 did
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Name |M | X g—i Tot. Seq.
type % Maj. | Pr.

T-P 1 of N | 25.0 2 2
1NN | n oy | N|321] 1 | 1
T-Puorm | 1| of | Y | 463 4 | 4
Radial | 1| o | Y 443 4 | 4
Diag | 1| =4 | Y [420] 4 | 3
2-Rad 2 gj Y || 52.0 5 7
3Rad || 3| o; | Y [422] 5 | 5
2-Diag 2 g | Y || 41.9 4 5

Table 2

Test results with a 20-dimensional generic face eigenspace and identity mizture mod-
els. Column 2 indicates the number of Gaussians, M. Column 3 indicates the type
of Gaussian where Yy denotes a diagonal covariance, o; an independent variance
and oy a variance equal to that of all other components. A ‘Y’ in column 4 indicates
that normalised pattern vectors were used.

not result in any significant loss of accuracy. Face classification results using
the 20-dimensional generic space are given in Table 2. Sequences were classified
(1) by a majority vote (Maj.) and (2) by accumulating probabilities (Pr.).
Gaussian mixture models of various complexity were compared for modelling
identity.

The first two methods in Table 2 used unnormalised pattern vectors. The first
method (T-P) used single radial Gaussians of equal variance resulting in a
nearest-mean classifier which was equivalent to the eigenfaces method of Turk
and Pentland [16]. The second method was a nearest neighbour classifier (1-
NN). Both these methods performed poorly. However, the use of normalised
pattern vectors resulted in a significant improvement with T-P,,,.,, classifying
4 sequences correctly. The mixture models had either radial or diagonal co-
variance Gaussians with between 1 and 3 components. A mixture of 2 radial
Gaussians provided the best performance. The use of sequences as opposed to
single images yielded improved recognition performance.

6 Conclusions

An integrated approach to face recognition in dynamic scenes was presented.
The recognition tasks to be performed by such a system are typically charac-
terised by poor resolution and variable lighting. In contrast to most previously
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developed face recognition methods, the data sets consist of many images of
relatively small groups of known people. Four recognition tasks were defined:
face classification, face verification, known/unknown and full recognition. All
but face classification require consideration of the class of unknown people.
As a consequence, identities should be modelled in a generic face space rather
than a face space which is specific to the set of known people.

Mixture models provide an effective way to model identities as class-conditional
probability densities in face space. Model complexity adapts to the structure
of the data and simplified models are easily obtained when data is lacking.
Face data used to compute a face space model for face detection were also used
to compute a linear face space model for recognition. The eigenface method of
[16] can be viewed as a special case and was outperformed by simple mixture
models. It was shown that modelling identities using such models is beneficial
given an appropriate level of mixture complexity. This approach to recognition
results in a system which can learn and update identity models independently
of one another. Recognition was performed using sequences of faces tracked
in near real-time under poorly constrained conditions. The use of sequences
yielded better recognition performance than the use of single images.

Gaussian mixture colour models were also used to provide an efficient and ef-
fective focus of attention for use in face detection and tracking. Adaptive colour
models for face tracking under varying illumination conditions are currently
being developed. Future work will explore other methods for learning view-
based models using density estimation in relatively high-dimensional spaces.
A promising approach which has been successfully applied in other applica-
tion domains such as character recognition is the use of mixtures of principal
component analysers [18,19].
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