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Abstract

For each p > 2 there exists a model M* of IAg(a) which satisfies the Count(p) principle.
Furthermore, if p contains all prime factors of ¢ there exist n,r € M* and a bijective map
f € dom(M*) mapping {1,2,...,n} onto {1,2,....,.n+¢"}.

A corollary is a complete classification of the Count(g) versus Count(p) problem. Another
corollary shows that the pigeon-hole principle for injective maps does not follow from any of the
Count(g) principles. This solves an open question [Ajtai 94].

1 Introduction

The most fundamental questions in the theory of the complexity of calculations are concerned
with complexity classes in which ‘counting’ is only possible in a quite restricted sense. Thus it
is not surprising that many elementary counting principles are unprovable in systems of Bounded
Arithmetic. These are axiom systems where the induction axiom schema is restricted to predicates
of low syntactic complexity. For a good basic reference see [Krajicek 95].

The status of the elementary counting principles (which normally all are proved by some explicit
or implicit reference to cardinality) is in a non-trivial way linked to questions in complexity theory.
Let me give a few examples:

(1) If there is a model of S; in which the G6del sentence Con(S3) holds, but where the elementary
pigeon-hole principle fails, then there is a model of S5 in which NP # co-NP [PW 87], [Krajicek 95].
In general, there is a model of S} in which NP # co-NP if and only if there is a model of $3 in
which P # NP [Krajicek 95].

(2) If there are models of Ay where the pigeon-hole principle fails in the sense that for some n
there exists a bijection from {1,2,...,n} — {1,2,...,n%}, then A, is not finitely axiomatizable.
And by a similar argument it can be shown that if there exist models of S5 where this version of
the pigeon-hole principle fails, then there are models of $2 in which NP # co-NP.

(3) If S} proves a version of the pigeon-hole principle, then S actually proves Bertrand’s prime

number theorem (there is always a prime between n and 2n). According to S.Buss’s theorem
[Buss 85] there would be a polynomial time algorithm which produces a prime number of a given
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number of bits. This is only known to be the case under strong conditional assumptions like
Riemann’s Hypothesis or P=NP.

Open problems like P # NP have been acknowledged by prominent mathematicians to be one of
our times’ most outstanding problems (see for example [Smale 92A] and [Smale 92B]). Progress
concerning any of the statements in (1)-(3) above are likely to go together with progress in the
P # NP problem and other related questions. It is generally believed by researchers in Bounded
Arithmetic that the status of the elementary counting principles in models of Bounded Arithmetic
has fundamental importance. Unfortunately the most fundamental versions of the problems are
beyond the current techniques.

It is possible to soften up most of these fundamental problems. One way to do this is to add a
new function symbol to the underlying language. Another essentially equivalent approach is to
replace the underlying first order logic with second order logic with a restricted comprehension
axiom schema [Riis 93A], [Riis 93B].

In [PW 85] A.Wilkie and J.Paris showed that the non-provability of the pigeon-hole principle (ex-
pressed by adding a new function symbol to the underlying language) would follow if it could be
shown that the pigeon-hole principle does not have bounded depth polynomial size Frege proofs.
And later M.Ajtai showed the validity of the converse implication. Actually Ajtai settled this issue
for IAg. Later in [Ajtai 90] Ajtai considered the g-matching principle (in the case ¢ = 2) which is
in some sense is stronger than any version of the pigeon-hole principle. More specially he showed
that there are models of IAg(R) in which the Count(2) principle fails while any Ag-version of
the ordinary pigeon-hole principles holds. Ajtai’s results was later improved in various directions
[BIKPPW 92], [KPW 95], [Riis 93B] and [BP 93].

The status of the Count(g) and Count(p) principle (in the basic case of IAg) was raised by J. Paris
and A. Wilkie in the early 80s. Later Ajtai conjectured (in connection with [Ajtai 88]) that for
different primes g, p the principles Count(g) and Count(p) are independent principles. Later Ajtai
showed that this indeed is the case [Ajtai 94]. Ajtai’s proof uses a list of deep results from the
modular representation theory of the symmetrical group. Ajtai’s proof depends strongly on ¢ being
a prime number.

In [Riis 93B] and [Riis 94A] the Count(q) versus Count(p) problem (also allowing composite num-
bers g, p) was reduced to a purely combinatorial conjecture. I showed that the existence of so-called
‘exceptional forests’, and the existence of implications between Count(g) and Count(p) go together.
In [BIKPP 94| P. Beame, R. Impagliazzo, J. Krajicek T. Pitassi, and P. Pudlak were able to
show that this type of problem is related to that of finding lower bounds on the degrees of the
witnessing polynomials in Hilbert’s Nullstellensatz. They obtained such lower bounds by a very
careful repeated use of Ramsey’s Theorem. This way they managed to solve a sufficiently strong
part of a technical conjecture from [Riis 93B] and thereby obtain a complete classification of the
Count(q) versus Count(p) problem in the base case (i.e. over IAy).

Independently in [Riis 94A] I managed to obtain an asymptotic classification of the exceptional
forests and thereby solving the Count(q) versus Count(p) problem. Like [BIKPP 94] the proof in
[Riis 94A] also involved a very complicated and technical use of Ramsey’s Theorem. In this paper I
have eleminated the involved and tricky use of Ramseys Theorem, and replaced it by a construction
more in the style of [BKPPRS 95].

Our aim in this paper is to prove the following theorem



Theorem 1 Letq > 2 and assume that v is an increasing function such that 7(n) € w(1)No(log(n)).
For any countable language L of arithmetic in which all terms have polynomial growth rate, and
for any sound extension of IA(L) (which leaves at least one function symbol f undefined) there is
a model M such that:

(i)  The Ao(L)-Count(q) aziom scheme is valid in M

(ii)  There exists n € M such that the function f defines a bijection from {1,2,...,n} onto
{1,2,...,n+ ¢ ™}.

A Ag(L)-Count(g) axiom scheme is a scheme (for Ag(L)-formulas) which formalizes the elementary
matching principle stating that if {1,2,...,n} is divided into disjoint p-element subsets, then p
dwides n.

2 Applications

The Count(q) principle implies many versions of the pigeon-hole principle, so the theorem shows
that the matching principle Count(g) so to speak has an interesting blind spot.

In the future we’ll let PHP},  (bij) denote the elementary principle stating that there does not ezist
n and a bijective map from {1,2,...,n} onto {1,2,...,n+ s}. This principle can also be stated for
all Ag(L)-formulas as a Ag scheme.

Corollary 2 (Settling conjecture by Ajtai)
For different primes ¢,p Count(q) / Count(p)

[Ajtai 94]

Corollary 3 (Obtaining the complete classification)
For fized q,p > 2 the following is equivalent

(a) p divides a power of ¢
(b)  Count(g) - Count(p).
[BIKPP 94], [Riis 94A]

Proof: The implication (a) = (b) can be shown either by producing constant degree witnessing
polynomial for the coresponding system of equations ([BIKPP 94]) or by constructing exceptional
forests ([Riis 93B], [Riis 94A]). The implication (b) = (a) follows from Theorem 1. According to
this theorem Count(p) / PHPiHT(*)(bij). If p contain a prime factor which does not appear in ¢
then Count(p) + PHP*_HT(*)(bij) and thus Count(g) - Count(p). |

*

Corollary 4 (Solving the Count versus PHP problem)
Let r(n) € w(1) N o(log(n)). For each ¢,p > 2

Count(p) t/ PHP:_I_QT(*)(bij) if and only if p divides a power of q
( if and only if Count(gq) - Count(p))

Let PHP:+p(inj) be the the statement that there is no n and no injective map from {1,2,....,n+p}
into {1,2,....,n} and let PHP}, (sur) be the statement that there is no n and no surjective map
from {1,2,..,n} onto {1,2,...,n+ p}.



Corollary 5 (Answering an open question by Ajtai) [Ajtai 94]
(2) PHPL,,(bif) Y PHPE (inj).

(b) PHP:*l(inj) 4F PHP?,,(sur).

(c) Count(q) i/ PHP: !(inj).

Proof: (a) follows from (c), because Count(q) - PHP} ,(bij). To show (c) notice that
PHP!+1(inj) PHP:HT(*)(bij) for any 7. But according to Theorem 1 Count(q) t/ PHPIHT(*) when
r € w(1) N o(log). The bi-implication in (b) is a simple exercise. ]
This shows that the pigeon-hole principle for injective maps are efficiently stronger than the pigeon-
hole principle for bijective maps. Actually it shows that:

Corollary 6 There ezists a model M* of IAg(a) in which Count(p) holds for each p € N\{1}. Yet,
there exists n € M* and an injective map f € dom(M*) mapping {1,2,...,n+ 1} into {1,2,...,n}.

Proof: By the completeness theorem it suffices to show that for each finite set p1,p2,..,p; of
integers, the conjunction Count(p;) A ....A Count(p;) does not imply PHP**1(inj). This follows by
an argument similar to the one given for (c) in corollary 5. |

Corollary 7 Let T denote any collection of Count(q) principles, ¢ € N. Then T I/ PHP:!(inj).
If T is any collection of Count (q) principles where each q is a prime # p, then I' I/ Count(p).

According to corollary 2, Count(7) neither proves Count(5) or Count(2). Does Count(7) prove
Count(5) V Count(2)? None of the methods in [Ajtai 94], [BIKPP 94] and [Riis 93B] which deals
directly with the Count(q) versus Count(p) principle are sufficient to answer this question. However
it follows directly from Theorem 1 that

Corollary 8 Suppose p1,pa,...,pr all contain a prime-factor which does not appear in q. Then
Count(g) ¥/ Count(p;) V Count(pz) V ... V Count(pg).

Proof: Notice that Count(p;) vV Count(pz) V ... V Count(py) imply PHP] .. for any r. But
according to Theorem 1 Count(q) I/ PHP] (. for certain functions r(%). m|

There is a natural way of translating a first order relational formula % into a Boolean propositional
formula 1, of a universe with n elements. If, for example, ¢ = VidjVk R(¢,7) A S(¢,7, k) then v,
can be written as A; V; Ak ;; A ¥ ;- For any relational formula 1) we consider the propositional
formulas 1,,. Notice that ¢ holds in all finite models if and only if %, is a tautology for each n. The
substitution aziom schema based on 1 consists of the formulas v, where each variable in ), can
be replaced by any propositional formula. The natural first-order formulations of the Count(g)-
principles and the pigeon-hole principles can be translated into a substitution axiom schema. The
boolean version of the Count(g)-principle becomes (after having introduced a variable y4 for each
g-element subset A C J for some |J| # 0 modulo ¢) the substitution schema \/;c; Aas; —¥a V

VaVBza, Brazs (ya Ays). A first order deduction rule w where 6;, 1 = 1,2,...,k and
6 are relational first order formulas can naturally (for each n) be translated into a deduction rule
for propositional logic. A first order proposition proof system P consists of a finite number of
substitution axiom schemas together with a finite number of first order deduction rules. A P-proof



(in Hilbert style) of a proposition 7 is a sequence 71,7z, . .., 7, = 7 of Boolean formulas, such that
each 7;, 7 = 1,2,...,u is either a substitution instance of a substitution axiom scheme, or there
are 41,1%2,...,1% < J such that WA is a substitution instance of a deduction rule.

2

Absolute tautologies 1, are tautologies for which 1) besides being valid in all finite models also

holds in all infinite models. Similarly an absolute deduction rule w is a rule for which
01 ANBy...N B0, = 0is an absolute tautology. An absolute proof system is first order propositional

proof system where all axiom schemes and all deduction rules are absolute.

A Frege propositional proof system is a propositional proof system which consists of: (i) a fi-
nite number of substitution schemas, i.e. Boolean formulas § with special substitution variables
Y1,Y2,- -+, Yk (i) A finite number of deduction rules w where 6;, 1 = 1,2,...,k and 6 are
substitutions schemes. We only consider propositional systems which are consistent and sound (i.e.
prove the usual tautologies).

Notice that Frege’s propositional proof systems are absolute proof systems where the underlying
first-order formulas are quantifier-free. The pigeon-hole principle PHP,, is not an absolute tautology
because it fails for infinite sets. Elementary tautologies like §; A@; — 61 are absolute. Modus Ponens
W is an absolute deduction rule. It is well known [Ajtai 88], [BIKPP 94|, and [PW 85| that
there are close links between results concerning provability in systems of Bounded Arithmetic and
the length of bounded depth Frege Proofs. Our method of non-standard models (introduced by
Ajtai [Ajtai 88]) allows us in a very straight forward way to generalize these results to absolute

proof systems.
We can express theorem 1 in terms of absolute proof systems.

Theorem 9 Let P be a propositional proof system which besides a finite number of absolute aziom
schemas and absolute deduction rules contains the Count(q) substitution aziom scheme. Then there

are no polynomial size bounded depth P-proofs of PHPI+qw(1)(bij).

From this theorem it is easy to obtain variants of corollaries 1,2,...7 where provability in TAg(a)
has been replaced by provability by ‘polynomial size, bounded depth, absolute proofs’. Furthermore,
Theorem 1 follows by standard arguments from Theorem 9 which thus can be considered as the
main result of the paper.

Theorem 9 is strongest possible in the sense that:
Theorem 10 The implication Count(g) - PHP], .(bij) is absolute for any fized k.

The Theorem states that in a non-standard model M of first order arithmetic there exists a sub-
stitution instance Counts(gq) of Count(g) such that the tautology

Counts(q) — PHP} .(bij) remains valid even if we allow arbitrary (i.e. not only M-definable)
truth-table evaluations.

3 Proofs based on equations

Consider the identity
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Assume naively that there exists a bijection f :{1,2,..,n} — {1,2,..,n+ 3}. This would induce a
bijection g from the 3-element subsets of {1,2,...,n} onto the 3-element subsets of {1,2,...,7+3},
as well as induce a bijection A from the pairs of {1,2,...,n + 3} onto the pairs of {1,2,...,n}.

In the case of n is even patch together % copies of i together with g to obtain a bijection from

{1,2,...,(3) + %(ngg)} onto {1,2,..., (nf’) + 2(3)}. In the case of n is odd just extend f to a
bijection f : {1,2,...,n+ 1} — {1,2,...,(n 4+ 1) + 1} and precede with n := n 4+ 1. We have
just proved (in a very roundabout way and by reference to the ordinary pigeon-hole principle) that

there can be no bijection from {1,2,...,n} onto {1,2,...,n + 3}.

This argument can (unlike the traditional cardinality arguments) be translated into a bounded
depth polynomial size Frege proof, which uses a substitution schema for the pigeon-hole principle.
And for essentially the same reason it can be translated into a proof in Bounded Arithmetic. The
(more trivial) implication PHP}, 3(bij) = PHP},(bij) follows by taking 3 copies of a supposed
counter example to PHP}, (bij). Thus

Proposition: The pigeon-hole principles PHP} , 5(bij) and PHP] ,(bij) hold in the same models
of Bounded Arithmetic.

Before we go into a deeper analysis of the pigeon-hole principle let us try to understand which of
such implications can be proved by the use of these ideas. The positive results in this direction
were first obtained in [Riis 93B]. What about the negative results (i.e. the classification of the
implications which not are supported by any binomial equation)?

To answer this we must consider identities over Z, (in the case of Count(q)) as well as Z,, := Z (in
the case of the PHP). We must also be prepared to consider identities which contain polynomial
expressions in nested binomial coefficients like:

ol (<7>) _ (@)5) _ 62((02}? f*;”))“" . ((’"312)1 (1))3) ‘L

The theory we develop below (and which goes far beyond just considering arguments based on
binomial equations) allows us to prove the following polynomial equation:

Theorem 11 Forr € C, and k,m € N

r T\ ktm 7 27— k—m\[7r
o ()6)- 2 () (55T)0)

The point (and usefulness) of this equation is that it allows us to replace a product (7)(]) with a
linear expression in (;) 7 < k+m. Thus for example ((H-;”))S = (%(7217)((7‘";’17) -1).. .((H;’”) —6))°
can first be expressed as a polynomial in (7217) (of degree 35). The theorem allows us to express
this polynomial as a linear expression in (H}”) where 5 = 15,16,...,104,105. It turns out that
(Eq 2) actually can be proved in Bounded Arithmetic (when k£ and m are fixed standard numbers
and 7 is considered as a free variable). Furthermore, the (elementary) identity (T+Z+b) - (") =

3¢ (2T - (;)) is also provable in systems of Bounded Arithmetic (when a,b and c are

j:C—CL c—j 7



fixed numbers). Thus to understand which proofs can be based on binomial equations (in a similar
fashion to the argument based on (Eq 1)), it suffices to consider equations of the form:

(Eq 3) zu: ¢ (T * k) = (7?)) £ 0 modulo g

J J

where ¢;; 7 = 0,1,...,u € Z,. In the case ¢ = o0, ¢1,¢y,...,¢, might depend on ». If the
Count(g) principle is available we can consider such equations modulo g. Thus we also need to
consider binomial equations over Z,. In the case we work over Z the argument only has a chance
to take place in models of Bounded Arithmetic if ¢1,¢s,...,c, are integers bound by a term in the
underlying language. This follows by Parikh’s theorem [Parikh 71].

In general both w := u(r) and k := k(r) can be functions of 7. Constraint on their growth-rate is
closely linked to the systems of Bounded Arithmetic we have fixed. For instance the argument has
only a chance to take place in systems where that (7) is bound by a term #(r) in the underlying
language (again because of Parikhs theorem [Parikh 71]). So in the case of IAg(a) where all terms
are polynomials, we need only to consider arguments where v € O(1). Summarizing we only
consider the question whether ¢q, ¢s, ..., ¢, can be chosen bounded by a fixed polynomial in 7 such

that equation

(Eq 3) has solutions for infinitely many r. Now (T+qu(1)) - (;) = 0 modulo ¢, so for any j € O(1) (Eq
3) has infinitely many solutions. On the other hand there exists integers, which actually can be
expressed as rational functions (like the function n — % in (Eq 1)), such that (Eq 3) has infinitely

many solutions when k(r) € O(1). Thus

Corollary 12

For any p there exists a binomial equation which together with IAo(a) + PHP;,(bij) supports a
proof of PHP:—}-pO(l) (bij).

For any p there ezists a binomial equation which together with I Ag(a) + Count(p) supports a proof
of PHP? o (bij).

There is no binomial equation which together with IAo(a) + PHP},(bij) supports a proof of
PHP bij).

There is no binomial equation which together with IAq(a) + Count(p) supports a proof of
PHP?, ) (bij).

wpen)

*

To obtain our general result we have to consider all proofs (not just proofs based on binomial
equations).

4 Exceptional forests

4.1 Stratification of the notion of existence

It has been said that existence does not come in degrees. The poor has as much existence as the
queen. Many independence proofs in logic can be viewed as tampering with the notion of existence.
In this section I present a method by which the existence of finitistic objects can be stratified.



In [PB 94] P.Pudlak and S.Buss considered a game G = G(%) played between a prover and an
adversary. In the game the adversary tries to persuade the prover that a certain propositional
formula 7 is false. The prover can ask questions (of a type specified as part of the rules of the
game). The adversary (who claims —1) can make up the answers. However if the adversary is
caught in an elementary contradiction (like claiming both 7 and —7) the prover wins. P. Pudlak
and S. Buss [PB 94] have shown that there is a close link between this game and the length of
propositional proofs. For instance any Frege proof system has a canonical translation to a prover-
adversary game. Actually Pudlak and Buss showed that the minimal number u(G) of rounds in
the game G() needed to trap the adversary is proportional to the logarithm of the length (counted
as the number of steps) of the shortest Frege propositional proof of 1.

We now show that any prover-adversary game has some other complexity measures which relate to
#(G) in a non-trivial fashion.

A strategy for the prover can be represented as a decision tree: At the root the first question is
assigned. For each possible answer (by the adversary) we have an edge. Each answer leads to a
new situation in which the prover might (or might not) ask another question. At the end of each
leaf [ the prover has gathered a specific piece of information. Later we will refer to this piece of
information as a (forcing) condition. Normally we only focus on trees where the prover stops long
before the adversary is trapped in an elementary contradiction.

In other words, we consider trees where each leaf is assigned a condition which represents some
partial knowledge concerning the adversary’s assignment. At the root of the tree we have no
knowledge. Each node corresponds to a concrete question ) while the various edges from a node
represent the possible answers. All conditions in the leafs are clearly incompatible because different
leafs contain conflicting pieces of information. We always assume (mostly for cosmetic reasons) that
a question is relevant (i.e. its answer cannot be deduced from the previous questions).

Now given g,n € N where ¢ > 2. Let F be a forests of labeled trees in which all trees have height <
h. Suppose that each condition appears 0 modulo ¢ times in F. Does the forest contain 0 modulo ¢
trees? If not, we say F s an exceptional forest. The question whether there exist exceptional forests
depends on the proposition 7, the class of allowed questions and how an elementary contradiction

is defined.
4.2 Exceptional forests are proofs

Proposition 13 If there is an g-exceptional forest (based on the game G(%)), then ) is valid.

Proof: Suppose that v is invalid so the adversary can avoid any contradiction even if presented
with the collection of all possible questions. Let the adversary chose a fixed strategy S. Now each
tree contains exactly one branch which represents the adversary’s answers (according to §). Thus
if each branch appears 0 modulo ¢ times, then |F| = 0 modulo g. a

The proposition shows that we can consider q-exceptional forests as proofs. Like most syntactical
correct strings not are proofs, so are most forests not g-exceptional forests. The relationship between
the shortest proof (in a fixed proof system), the minimum number of rounds x(G) in interactive
proofs and the complexity (number of trees/height of trees etc) in g-exceptional forests is related
in an interesting and non-trivial fashion. As a by-product of our analysis we will show that for



certain classes of propositions i and proof systems the length of the shortest proof of ¥ and the
minimal height of the trees in g-exceptional forests (based on G(v)) correspond to each other in a
well defined one to one fashion.

The fact that a g-exceptional forests based on a prover-adversary game G(¢) can be viewed as
a ‘proof’ of 9 is reflected in various other ways. For example, all the basic properties of logical
deductions also hold for g-exceptionalness. As an example, if there exists an g-exceptional forest
for G(¢p A9') (of height < h) there exists g-exceptional forests for both G() and G(¢’) (of heights
< h).

In this section we briefly indicate how exceptional forests can be translated into bounded depth
polynomial size Frege propositional proofs. This is another reason we can view g-exceptional forests
as proofs. We consider a adversary-prover game G(p g) where the adversary claims that there
exists a bijection f from D onto R. The prover is allowed to ask questions of the form f(d) =? or
f7Y(r) =?. In this game we always think of D and R as being two big finite sets where |R| > |D|.
In the following section we only focus on the games G(p g) even though many of the results and
ideas hold for most prover-adversary games.

Example: Consider a forest 7 p ry of (D, R)-labeled trees (all of height 1) which contain the trees
with root questions r7; v € R together with (g — 1) copies of the trees with root questions d?; d € D.
FEach branch can be represented as a pair (d,r); d € D, r € R. If |D| # |R| modulo q, this forest
is g-exceptional.

These type of forests are so trivial that we like in [Riis 93B] and [Riis 94A] in some contexts will
ignore them and only reserve the term exceptional to less trivial examples.

Assume that for some » # 0 modulo ¢ there exists » and a bijection f:{1,2,...,n} — {1,2,...,n+
r}. The existence of F({1,2,...n},{1,2,...n4+}) Cal be expressed as Boolean tautology. Each substitution
instance of these tautologies have bounded depth polynomial size general proofs. Now we can
prove that a bijection f : {1,2,...,n} — {1,2,...,n + 7}, defines a partitioning of the trees in
F(({1,2,..m},{1,2,..n+r}) into disjoint g-element subsets. This violates the Count(q) principle. The
general case where 7 is a fixed power of ¢ is treated in an essentially similar fashion even though
(as it turns out) we have to consider forests of height > 2/=1 4+ 1.

4.3 Some basic results
Proposition: If |D| = |R|, there are no q-exceptional forests.
Proof: The adversary’s proposition ‘there is a bijection from D onto R’ is valid. a

Proposition: Suppose that the prover is only allowed to ask questions of the form f(d) =?. Then
there are no g-exceptional forests.

Proof: Let f : D — R be any injective map. The adversary can in a global way answer any
collection of questions consistent according to this map. Thus there can be no exceptional forest.
a

A homogeneous tree [dy,ds,...,d;;m1,72,...,7m] is a tree which consists of the conditions a for
which each d € Dom(a), has d € {d;,dy,...,di} or a(d) € {r1,72,...,7}. Let F[[k, m]] denote
the forest which consists of the trees [dy,ds,...,dk; 71,72, .., 7] Where d; < d3 < ... < dj and



71 < 79 < ...< Ty. It turns out that arguments based on a binomial equations are in some sense
isomorphic to arguments based on forest of the form Uy Agm F[[k, m]], where Ag,, denotes the
multiplicity of the forest F[[k, m]].

We have already seen that theorem 11 allows us to reduce arguments based on binomial equations
to a special normal form. Here is the analogous result for homogeneous forests of homogeneous
trees:

Lemma 14 The forest F|[[k, m]| contains the same conditions as the forest which contains

(k+7?r‘z,—j) (ij__k;m), copies of F[[7,0]]. The forest F[[7,0]] contains ezactly the conditions of length

VE

Proof: The condition {{dy, 71}, {d2,72},...,{d;,r;}} appears

(k+i_j) (233__]27”) times in the forest F[[k, m]] when j = max{k, m},

max{k,m} + 1,...,k+ m. It appear once in F[[7, 0]]. O
Proof of Theorem 11: Let |D| = |R|. It suffices to show that for for all integers d=7» >k + m

B0 2, en) (5700

The left hand side denotes the number of trees in F[[k, m]]. The right hand side denotes the number
of trees in F' := Uj—max{km} (4pr ) (¥75=™) F[[5,0]]. According to lemma 14 each condition

k+m—j i—m
appears the same number of times in F|[[l, m]] and F’. Now choose a bijection p : D — R. This
bijection select exactly one condition from each tree in both F[[I, m]|] and F’. Thus |FI[[l,m]]| = |F’|.
O

Two conditions (branches) o and § are incompatible (a L ) if there exists d € D : o(d) # p(d) or
there ezists T € R: a~'(r) # 7(r). Two conditions (branches) o and J3 are compatible (al||B) if
they not are incompatible. Suppose that T is a (D, R)-labeled tree, and suppose p: D — R. Then
T? denotes the tree which is obtained by first removing all edges representing answers incompatible
to p and, second by contracting all edges < d,r > where p(d) = 7.

Lemma 15 Let T be a (D, R)-labeled tree of height h, let p: D — R, and let D' := D \ dom(p)
and let R' := R\ ran(p). Suppose that |D'|,|R'| > h+1, then T*? is a (D', R')-labeled tree. The tree
T*? might have height 0, but it is never empty. It have height at most h

Proof: Induction after |p|. As the induction is downwards starting from on arbitary point it suffices
to show the first step in the induction. So assume that |p| = 1, and that |D| - 1,|R|—-1> A+ 1.
We can write p = {< d,» >}. For any question d'?, d' # d ('? ' # r) in T remove the edge and
the subtree above the edge < d',» > (< d,7’ >). The number of leafs in T is at least 2 because
|D|,|R| > h+ 1. Thus each question in this new tree has at least one legitimate answer and will
be non-empty after this procedure. For any question d? (7?) keep intact the edge < d,7 > while
removing all other edges and there subtrees on top of these. Contract the edge < d,r >. This way
we get a tree which still has height h or in certain special cases h — 1. In the case T := (d) or
T := (r) the tree T” becomes the (unique) tree of height 0. o
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Corollary 16 Let F be an g-exception forest of (D, R)-labeled trees of height < h. Let p: D — R
be a partial map. Let D' := D\ dom(p) and let R' := R\ ran(p). Suppose that |D'|,|R'| > h + 1.
Then F* is an g-ezceptional forest of (D', R')-labeled trees.

Proof: Suppose that F = {T1,T,...,T,} is an g-exceptional forest. We have to show that
Fe={T{,T,...,Tf) is a g-exceptional forest. We already know (lemma 15) that all restricted
trees are non-empty, so F* contains the same number as trees as F. We have to show that each
condition appears 0 modulo ¢ times in F” and that the number of trees of height 0 (=trees which
contain only the empty condition) is 0 modulo g. It suffices to consider the case |p| = 1. Consider
a branch {< dq,r1 >,< da,73 >,...,< d;,7; >} with elements in D', R’. Its total number of
appearances is exactly the same as the number of appearances of the conditions {< dy,71 >, <
da,72 >,...,< dj,r; >} and {< d,7 >,< d1,71 >,< d2,72 >,...,< d;,7; >}. This number is 0
modulo ¢g. The number of trees of height 0 is the same as the number of trees which contain the
empty condition. This number is the same as the number appearances of the condition {< d,r >}
in F i.e. 0 modulo g. O

Lemma 17 Let ¢ > 2 and let | > 1. Let D, R be finite sets with |R| — |D| = ¢*. Then there ezists
an exceptional forest F of (D, R)-labeled trees of height at most q¢.

Proof: Let D, R be finite sets with |R| — |D| = ¢'. First suppose that d := | D| is a power (at least
[+1) of g. Consider the forest Fj which consists of F[[h, 0]] together with ¢ — 1 copies of F[[0, A]].
Each branch of height h appears exactly g times, while branches of all other lengths appears 0

times. The number of trees in Fj is (¢ — l)(h) + (d+q Y. If A > ¢ this is 1 modulo ¢, and F is
an exceptional forest. In general (when there is no restriction on ci) chose d' = ¢* a big power of
q such that d’ < d. Construct an g-exceptional forest of (D, R')-labeled trees where |D’| = d’ and
|R'| = d + ¢'. Now apply corollary 16 to obtain an g-exceptional forest of (D, R)-labeled trees. O

At first sight many questions concerning specially labeled trees might seem hopeless. However in
general we can break down trees and put them into a nice normal form. To see this let 7" be a
(D, R)-labeled tree. Consider the followmg equation which holds modulo ¢

B R [
V

&
$o---t

Omodqr

Notice that both sides of the equation contain 1 modulo ¢ trees. Also that each condition appears
the same number of times (modulo ¢) on each side of the equation.
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Suppose that F := {T4, ..., T} is any forest. Repeated application of the identity allows us to break
down the trees in F. Eventually each tree is brought on a normal form where at each level all but
at most one node is a leaf. We call such trees perfectly unbalanced (=PU). Thus we have proved,

Lemma 18 Fiz g > 2, ¢ € N. Let F := {T4,...,T.} be any forest. There exists a forest F' .=
{T{,T3,....,T,,} in which each condition counted modulo q appears the same number of times as in
F. Each tree in F' is a PU-tree and furthermore u' = u (modulo q).

Notice that the PU-trees have a very simple representation. Each PU-tree can in a canonical
fashion be represented by expressions of the form,

(s117,512)(82,17,82,2)5 -+, (55=1,17,85-1,2)(5;7), where 5,1 € D if and only if s, € R. Similar s;; € R
if and omly if s;2 € D.

It turns out that there are various useful identities between collections of PU-trees. For example
(].D?, lR)(2D?,23)(3R?) - (].D?, lR)(2R?,2D)(3R?) = (lD?, lR)(QD?) - (].D?, lR)(QR?).

And (1p7,1r)(2D07,2r)(3R?) — (2D07,2r)(1D?,1R)(3R?) = (1p7,1r)(2D?) — (2p7,2R)(1p?). The
identities illustrate that the difference between two trees which agree for all branches of length > 1
can be expressed as the difference between two trees of height l — 1. These considerations show that
we have a lot of flexibility below the top-level. From now we assume (without loss of generality)
that we have brought all PU-trees to the form (d1?,71)...(d;—1?,71—1)(u?) where u either belongs
to D or to R.

Repeated use of the equations gives the following lemma.

Lemma 19 (Normal form) Let F be an g-ezceptional forest of (D, R)-labeled trees of height < h.
Then there exzists a q-exceptional forest of (D, R)-labeled PU-trees of height < h. Furthermore, it
is possible to ensure each tree is of the form:

(d1?,7m1)(da,72) .. .(d1—1?,71-1)(u?) where dy < d < ... < dj_1, where w € D or w € R, and where
[ <h.

Here is the first class of (non-trivial) 2-exceptional forests I discovered. This happened during my
doctoral work [Riis 93B]:

Example Consider a forest ]:(J,F) which consists of the trees which contain all PU-trees of the
form:

(1)  (d?,71)(r2?) where d € {1,2,...,d}, r1,72 € {1,2,...,7}, 71 > 72 and 71 — 72 is odd.

(2)  (d?,71)(r2?) where d € {1,2,...,d}, r1,72 € {1,2,...,7}, 71 < 7o and 73 — 71 is even.

(3)  (d1?,7)(d2?) where dy,dz € {1,2,...,d}, and 7€ {1,2,...,7}.

Notice that [F(zx| = a@) + F(g) The forest 7z is 2-exceptional when dis odd and 7 — d = 2
modulo 4. Each branch appears an even number of times yet the forest contains an odd number of
trees. The forest (5 7) contains 175 PU-trees. In all cases the forest 7 ;) has height 2. &

4.4 Classification of the g-exceptional forests

For any property P of conditions we can define an equivalence relation ‘ =% by a =p g if and only
if Vp: P(p) = (a|lp & B|lp). The relation is clearly reflexive and symmetrical. For o, 3,7, for
which a =p 8, B =p 7 for any p with P(p) we have a||p < Bl|p < 7||p. Thus the relation =p is
also transitive.
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A property P of conditions is transitive if P(a) = P(f) when 8 C a. Let T be a (D, R)-labeled
tree. For a transitive property P of conditions we define T'(P) as the collection {a € T : P(a)}. A
decision tree is proper if each question has at least one legitimate answer.

A condition a is k-extendable, if P(a) and for each d? € D (and each 7? € R) each r € R (d € D)
with P((d,r) — a) the condition (d,r)— o is (k — 1)-extendable. A condition « is 1-extendable, if
P(a) and for each d? € D (and each r? € R) there exists » € R (d € D) such that P((d,r) — a).
A transitive property P is k-extendable if () is k-extendable.

Lemma 20 For any transitive property T(P) can be organized into a decision tree. If, furthermore,
P is h-extendable then T(P) is a proper decision tree.

Proof: First remove the conditions (branches) which do not satisfy P from T. The transitivity
ensures that this is a tree. This tree 7’ might have top nodes in which a question where no legitimate
answers can be produced. However if () is h-extendable, a question on level 7 < h must lead to an
answer which is > (h — j)-extendable. m]

Assume that T is a (D, R)-labeled tree of height < h. Let P be a transitive h-extendable property.
Let T7 denote the tree which appears by contracting the edges with a single forced answer. We
can (and will) view the tree 77 as being labeled by the equivalence classes defined by =p.

A decition tree of (D, R,P)-condition is a decision tree for the game G(¢ (=: G(D, R, P) where
1 = "p defines a bijection D — R and P(p)” and where a forced answer can be used in getting an
elementary contradiction. From the definitions we get

Lemma 21 Let P be a transitive h-eztendable property. Then for any (D, R)-labeled decision
tree T, the tree TT is a decision tree for the game G(D,R,P). If F is a q-exceptional forest of
(D, R)-labeled trees of height < h, then FP is a q-exceptional forest of (D, R, P)-labeled trees.

Our analysis towards the classification of exceptional forests is going to use various transitive
properties.

(i) For pg : D — R let P,, be the property that p||po. This is a transitive property which is
(ID] = |po|)-extendable. Notice that (D, R, P,,)-conditions are isomorphic to (D', R')-conditions
where D’ := D\ dom(pg) and where R’ := R\ ran(po).

(i) Let P(p,,p,r,,R) be the property that p maps D; into R; and maps D\ D; into R\ R;. Notice
that P(p,,p,r,,Rr) is a transitive property and that it is min({|D1|, |Ra|,[D| — [D1l, |R| - |Ra[})-
extendable.

(iii) Let T be a (consistent) collection of constrains of the form p(d) = r & p(d') = 7. Let
Pr be the property that p satisfies all the constraints in I'. Notice that Pr is transitive and is
min({|D|, |R|}) — |T'|-extendable.

(iv) Let D;;, j € J; (and R;;, j € J!) be partitions of D (and R) into disjoint sets. Assume
that the sizes |D;;| = |R;;| = ¢(i) only depend on 7. Let P be the property that for each ¢ and
each j there exists k such that p(D;;) = R;;. Notice that P is a transitive property which is
min;({|Js|, |J}|})-extendable.

(v) Let D;; and R;; be given as in (iv). Assume that each D;; and R;; are ordered. Let P’ be
the property that p besides satsifying P is order preserving. We notice that the property P’ is
transitive and is min;({|J;|,|J!|})-extendable.
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Lemma 22 Letq > 2,1 > 1 be fized integers. For any pair of sets (D, R) with |D| +¢'~* +2¢' = 0
_ ! : e . |Dl+d"i420t .

modulo 3¢+2 and |R| = |D|+ ¢', there ezists a partitioning Pp of D into d' := 3073 disjoint

(g 4 1)-element subsets (forming a collection Ph) and d' — ¢!~ disjoint (2q + 1)-element subsets

(forming a collection P% := Pp \ P} ).

Furthermore, there ezists a partitioning Pr of R into d’ disjoint (2q + 1)-element subsets (forming

a collection P%) and d' —¢'~! disjoint (g+ 1)-element subsets (forming a collection Pk := Pr\ P3).

Proof: Notice that d'(¢ + 1) + (d' — ¢"1)(2¢ + 1) = (3¢ + 2)(d' — ¢! — 2¢") = |D| and that
d'(2¢+ 1)+ (d' = ¢)(g+1) = (3¢ +2)(d' — ¢ —2¢') + ¢ = |D| + ¢’ = |E]. =
Now fix a pairing P which: (i) pairs the members in P} (i.e. the selected g+ 1-element subsets of
D) with the members of P3 (i.e. the selected 2¢ + 1-element subsets of R) (ii) pairs the members
in P2 (i.e. the selected 2q + 1-element subsets of D) with the members of P} (i.e. the selected
g + l-element subsets of R).

Fix a cyclic order on the elements in each selected g+ 1-element set (i.e. each member in P} UPE).
Also fix a cyclic order on the elements in each selected 2g 4 1-element set (i.e. each member in
PE U PE).

In addition to these fixed choices we consider a selection S which chooses an emphasized point in
each selected subset. Later we will run through all possible S§. Notice that there are 1 modulo ¢
possible selections §. Each emphasized point induces an order among the ¢ (or 2¢) non-emphasized
points in the same selected subset (by letting the selected point be the smallest point in the
ordering).

Let pls : D — R be a map which maps the emphasized point in a (g + 1)-element ((2¢ + 1)-

element subset) to the emphasized point in the corresponding (wrt. P) (2¢ 4 1)-element subset

+ 1)-element subset). According to (i) this property (which we denote 77(1) is transitive and
((¢+1) g property s
(|D| - 2d' + ¢'~1)-extendable.

Let P?Q) be the property that p maps the non-emphasized points in a given (g + 1)-element subset
(€ PL) onto the non-emphasized points in a (g + 1)-element subset (€ PL). As noticed in (iv) this
property is transitive and d’-extendable.

Let Pg) be the property that p besides satisfying Pga), also maps the j*P element (after the
emphasized point) to the j** element (after the emphasized point) j = 1,2,...q. As noticed in (v)
this property is transitive and d’-extendable.

Let Pg«sa) be the property that p maps the non-emphasized points in a given (2g + 1)-element
subset (€ P2) onto the non-emphasized points in a (2¢ + 1)-element subset (€ PZ). This property
is transitive and d’-extendable.

Let P§3) be the property that p besides satisfying P§3a), also maps the j*P element to the j*P element

7=1,2,...2q.
Let Pg**) = Pgl) A P§2) A P‘(gs). This is a transitive property which is d'-extendable. We can
also describe the (D,R,Pé**))-labeling as arising from the game GE%)R) which is a modification

of G(p,r). More specifically in GE?,R) the adversary has to ensure that the map defines a partial

bijection from D into R. Furthermore, the adversary has to insure that the map:
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(i) maps the emphasized point in a g+ 1-element subset (2¢ + 1-element subset) to the emphasized
point in corresponding (wrt. P) 2¢ + 1-subset (g + 1-element subset).

(ii) maps (in an order preserving fashion) the non-emphasized points in any given g + 1-element
subset (€ P}) onto the non-emphasized points in a g + 1-element subset (€ Pg).

(iii) maps (in an order preserving fashion) the non-emphasized points in any given 2¢ + 1-element
subset (€ P3) onto the non-emphasized points in a 2q + 1-element subset (€ PR).

Now let D' := PL, R':=P% and let D" := P3, R" := P4.

The partition P induces an identification i1 of elements in D’ and R as well as an identification
iy of elements in R’ and D" (actually any pair of identifications 41,73 will do). Let Pg be the
property that p (besides satisfying Pé**)) induces maps D’ — R’ and D" — R/ such that for all
d € D' p~'(3a(p(d))) = 51(d). The property Pg is transitive and (d' — g/ — 1)-extendable.

Thus for each selection S we have defined a property Ps. The property Pgs is designed such that

Lemma 23 (D, R, Ps)-conditions are isomorphic to (D', R')-conditions where |D'| = d' — ¢! =

%%qu — ¢! and where |R!| = |D'| + ¢ 1.

Suppose that T' = (dy,71)(dz2,72) .. .(dh—1,7h—1)(u) where d; € D, r; € Rand u € DURis a PU-
tree. Then T(5) := T7Ps is a (D', R')-labeled PU-tree. For each PU-tree T we define a forest F(T)
by letting F(T') := Ug g T(5). As usual all sets are multi-sets. We now focus on the relationship
between T’ and F(T'). First we divide pairs (d,) into 6 categories (which are independent of 5):

(1) d belongs to a (¢+1)-element subset A € Ph and r belongs to a (2¢+1)-element subset B € P
and P(A4, B).

(2) d belongs to a (¢+1)-element subset A € Ph and r belongs to a (2¢+1)-element subset B € P
and - P(A, B).

(3) d belongs to a (2¢+ 1)-element subset A € P2 and 7 belongs to a (g+ 1)-element subset B € P}
and P(A, B).

(4) d belongs to a (2g+1)-element subset A € P}, and r belongs to a (¢+1)-element subset B € Pg
and -P(A, B).

(5) Both d and 7 belong to (g + 1)-element subsets A and B (in respectively Pi and P3).

(6) Both d and 7 belong to (2¢ + 1)-element subsets A and B (in respectively P2 and P3).

We say two pairs (d,r) and (d', ') interact if at least one of the following conditions is satisfied:
(i) Both d and d’ belong to A € P} U P?

(ii) Both 7 and 7’ belong to B € PL U P2

(iii) The element d belongs to A € P} U P2, the element ' belongs to B € P U P and P(A4, B).
(iv) The element d’ belongs to A € P}, U P}, the element r belongs to B € P4 U P% and P(A4, B).

Lemma 24 AssumeT = (d1,71)(d2,72) . ..(drh-1,7h-1)(u,) is a PU-tree in which (d1,71) is a pair
)

of type 5 or 6 which are not interacting with any other (d;,r;), 7 > 1. Then F(T) can be divided
into q identical sub-forests Fy,Fy, ..., F, together with 1 modulo q trees of height 1.
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Proof: Assume (di,71) is a pair of type 5 which does not interact with any (d;,7;), 7 > 1. Now
fix all emphasized points except the emphasized point in A € le) and the emphasized point in
B € P4. We now want to fix the remaining emphasized points. There are (¢ + 1)? choices. Of

these ¢ choices produce emphasized point in A and B such that the property P§2) is satisfied. In

the remaining (¢ + 1)? — ¢ choices sz) is not valid. Thus no branch survives beoynd the first level
so we get (¢ + 1)2 — ¢ = 1 modulo ¢ decision trees of height 1.

The case where (dq,71) is a pair of type 6 is treated similarly except that instead of g choices

there are 2¢ choices (where ng) holds). And instead of (¢ + 1)? — g trees of height 1 we get
(2¢ + 1)? — 2¢ = 1 modulo g trees. O

Lemma 25 Assume that T = (d1,71)(d,72) . ..(di, 7:)(dig1,7iq1) - - - (un) is a PU-tree where each
(d;,7;) interacts with at least one other (dji,r;) (j # 7', 7,7’ <1). Assume that (d;,r;), 7 > 1 are
all of type 1,2,3 or 4 which do not interact with any pair (d1,71),(d2,72),...,(di, ;). Then F(T)
consists of trees which all have height < [1/2] + 1.

Proof: Assume that (d;,,7;,),(ds,,75,)s- -, (dje,75.), J1 < J2 < ... < Ji are all pairwise interact-
ing. Now all (D', R')-labeled trees will only contain the edge corresponding to (d;,,7;, ) because
the edges (dj;'c’ Tj;c), j' > 1 either represent redundant information or incompatible information. In
the first case the edge gets contracted, while in the second case the edge and the part of the tree
which is above it get removed. Thus the maximal number of pairs (d;,7;),7 < ¢ which survives is
|2/2]|. All pairs (d;,7;),j > ¢ get contracted or removed. The top node (u) is the only part of T

above level 7 which survives. O

Lemma 26 Assume that T = (d1,71)(d2,72)...(dnh—1,7h-1)(ur) is a PU-tree. Then there exists
a forest F(T) such that:

(i) F(T) and F(T) contain the same conditions (counted modulo q) as F(T).

(ii) Both F(T') and F(T) contain 1 modulo q trees.

(i) The Forrest F(T)' can be divided into disjoint parts F(T )1, F(T)z2,...F(T), and F(T )remainder
such that F(T)1,...F(T), are identical and all trees in F (T )remainder have height < |h/2] + 1.

Proof: We have already seen that there are trees 74,75, ..., Ts for some s = 1 modulo ¢ such that
Ty,Ty,...,Ts contain the same conditions (modulo ¢) as T'. These trees contain pairs
(d1,71),...,(dn—1,7h—1) that can appear in any order we might wish. So without loss of generality

we can assume that each tree T, j < s is of a form so lemma 24 or lemma 25 is applicable. Let
F(T) := Uj<s F(T;). Thus with this notation we can assume that F(T)’ satisfies (iii). Now T

contains the same conditions as the forest T4, T, ...,Ts so F(T') and F(T') also must contain the
same conditions. Notice that the forest F(T') contains |S| = 1 modulo g trees. Finally notice that
the forest F(T')’ contains s -|S| = 1 modulo g trees. o

Suppose F is a forest of (D, R)-labeled PU-trees. Then F* := Urcxr F(T')', where (of course) both

F and the right hand side of the expression (as usual) are treated as multi-sets.

Now the forest F* arises as a union of forests F(T') which consists of trees with (D,R,Pé**))-

labelings. According to the identification in lemma 23 F* consists of (D’, R')-labeled trees where
N gt _ gl-1 _ |Dl+etm42¢b 1 n_p -1 )

|D'| =d' — ¢~ = =57 — ¢ and where |[R| = [D'| + ¢"". Thus we have shown:
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Lemma 27 Let g > 2,1 > 1 be fized integers. Suppose that |D|+ ¢'~* + 2¢' = 0 modulo 3¢+ 2 and
|§i| = |D| 4 ¢'. The procedure which transforms a forest F of (D, R)-labeled PU-trees into a forest
F of (D', R')-labeled PU-trees has the following property:

If F is a g-exceptional forest of trees of height < h then F can be divided into two disjoint parts:
(i) a g-ezceptional forest of height < L%j +1
(ii) a part of trees each appearing 0 modulo g times.

We now apply the property P,, defined in (i)

Lemma 28 Let D, R be finite sets with |D|,|R| > h + 3¢+ 2. Then there exists po : D — R with
lpol < 3¢ + 1 such that |D\ dom(po)| + ¢'~! + 2¢' = 0 modulo 3¢ + 2. Furthermore, if we let P,

denote the property that po is compatible to p then a (D, R, P,,)-labeling is in a canonical fashion
isomorphic to a (D", R")-labeling where D" := D\ dom(pg) and R"” := R\ ran(po).

Theorem 29 (Classification of exceptional forests) Suppose that ¢ > 2,1 > 1 be fized inte-
gers. Let D, R be finite sets with |R| = |D| + ¢' and suppose that |D| > 4"F1¢'. Then:

There is no q-ezceptional forest of (D, R)-labeled trees of height < 21,
There are q-exceptional forests of (D, R)-labeled trees of height ¢'.

Proof: The upper bound was already proved in lemma 17. The lower bound follows by repeated
use of lemma 26 and lemma 28. The first application of lemma 28 let us pass from (D, R) to

(D", R") where |D"| > |D| — 3¢ — 1. Now |D'| > % so |D'| > |D|/(3¢+ 2). To ensure

that we can repeat this process satisfactorily it suffice to ensure that |D| > 4't1¢!. a

4.5 Bases

In our lower bounds we first lead to another and more general concept than that of a (D, R)-labeled
decision tree. Let C be a collection of conditions (branches). If these can be organized into a (D, R)-
labeled decision tree the conditions must be pairwise incompatible and further if p: D — R is a
partial bijection (with |p| < |D| — h) then at least one condition o must be compatible to p.

A (I, D, R)-basis (or just I-basis when D and R are clear from the context) is a collection C of pairwise
incompatible conditions which for each p : D — R with |dom(p)| < [ contain at least one branch o
which is compatible with p. It is not hard to show that this notion is quite robust with respect to
the choice of [. More specifically, C is an [-basis for some value |D| —h(h+1)/2 > 1> h(h+1)/2if
and only if it is [-basis for any value |D| — h(h 4+ 1)/2 > 1 > h(h 4+ 1)/2. So when we let [ = |D|/2
we could really have chosen many other values of [.

It is easy to show that the conditions in a (D, R)-labeled decision tree (of height < |D[/2 — 1)
form a |D|/2-Basis. It would be convenient if the conditions in a (I, D, R)-basis always could be
organized into a (D, R)-labeled tree. This is not (quite) the case:

Example (part 1): Let C consist of the conditions {< 1p,2g >},

{<2p,2r >},{< 1p,1g >,< 2p,rRr >} where rg # 2R and

{< 1p,7r >,< dp,2g >} where dp # 2p (and rg # 2g). If |D| > 6, C is an |D|/2-basis. To see
this let p: D — R be given. If necessary extend p such that p(1p), p(2p) and p~1(2g) are defined.
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This is possible when |p| + 3 < |D| (e.g. when |ran(p)| < |D|/2 and |D| > 6). Now notice that
there must be exactly one condition in C which is extended by the map which extends p. Notice
also that the conditions in C are pairwise incompatible.

—<2p, 2>
© =R Missing
1= =b
=R S =p
1o g = EQ/\‘ + =2y — 2g
— | 2p
_ _
\tQ — EQ\‘
—  2bp

—

Connection Components.

The conditions in the (D, R)-system C cannot be organized into a (D, R)-labeled decision tree be-
cause none of the candidates for the question at the root (1p?,2p? or 2g?) appears in all conditions.

&

In [Riis 93B] and [Riis 94A] I showed (for a different but similar labeling) that each (D, R)-system C
can be ‘refined’ to a (D, R)-labeled tree. The price for this a blow-up in the length of the branches.
In this paper I show a stronger result which avoids this. Consider again the example:

Example (part 2): If we make a dummy refinement of {< 2p,2R >} and replace this condition
by the conditions {< 1p,” >,< 2p,2r >}.cRr\{25} We get a collection C’ of conditions which can
be organized as a decision tree. So the dummy refinement allowed us to glue the two connection
components together. Now notice that C' = C+(2p?,2g)(1p?)—(2p?) soC =C'—(2p?,2r)(1p")+
(2p?). Now we can actually write C’ as [1p;2gr] — (1p?,1r)(2R?) + (1D?,1R)(2D?). Thus C =
[(1p;2r] — (107,1R)(2R) + (1p7,1Rr)(2D7) — (2D7,2R)(1D?) + (2D?). To check this directly notice
that the condition {< 1p,2gr >} appears in each tree in [1p;2g],(1p?,1r)(2r) and (1p?,1r)(2p7).
So counted with signs it appears 1 time. The condition {< 2p,2gr >} appears only in (2p7?).
The conditions {< 1p,1r >,< 2p,7r >} TR # 2g appears in (1p?,1g)(2p?) but in no other
trees. The condition {< 1p,7r >,< dp,2r >} dp # 2p, (dp # 1lp, TR # lgr,2R) appears
only in [1p;2g]. So all conditions in C appear 1 time in the linear combination. The condition
{< 1p,1g >,< dp,2r >} dp # 2p do not appear in C. It appears in [1p;2g] and (1p?,1r)(2R)
which appears with opposite sign. Finally notice (after having checked the remaining cases) that
the right hand side contains a surplus of 1 tree. &

The example shows that a basis C need not consist of conditions which can be collected as a tree.
On the other hand the example also shows that there is a linear combination %; (—1)"()T; of
trees (with signs) such that ¥; (—1)"®) = 1, and such that C and ; (—1)")T; contain the same
conditions (counted with sign). It turns out that this holds in general so actually any |D|/2-basis
can be expressed as a linear combination of (D, R)-labeled trees.
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Lemma 30 Assume that C is a |D|/2-basis of conditions of length < h. Then there exists a linear
combination ¥; A; T; (X\; € Z) of trees T1, Tz, ..., Ty, such that

(i) A =1

(i) The trees T; have all height < h (< h?) .

(i) F¢ and C contain the same conditions (when these are counted with signs and multiplicity).

Robustness: The lemma shows that the choice of [ = |D|/2 is quite arbitrary. What really matters
is that [ do not get to close to 0 or |D| in terms of square of heights of the trees.

A element d € D (r € R) is a semi-root for C if for each » € R (d € D) such that (d,7) € a. We
say d € D (r € R) is a root if it is a semi-root, and it appears in all conditions in C. Notice that a
root can always serve (though it need not) as the root question in a decision tree.

Lemma 31 Any |D|/2-basis C has a semi-root. Actually if o = {< dy,71 >,...,< dy,7s >} €C,
then there are semi-roots uy,us, ..., us, where u; € {d;,r;}.

Proof: Let o = {< dy,71 >,...,< dsy,7s >} € C. Assume that neither dy or r; are semi-
roots. Then there exist 7' and d’' such that {< di,7’ >} and {< d’,71 >} do not appear in any
B € C. Let o consist of the pairs in a which are compatible to {< dy,»" >,< d',r; >}. Let
p:=4{<dy,r >,<d,ri >} Ud'. Notice that if p is compatible to 8 € C, then 8 and o’ must be
compatible. As § does not contain the pairs {< di,7" >} and {< d’,7; >} none of the elements
dy,d', 71 and 7’ belongs to pairs in 8. But then 8 must be compatible to a which contradicts the
assumption that all conditions in C are pairwise incompatible. a

In the example 1p was a semi-root (and so was 2p and 2g). The conditions which did not contain
1p (i.e. {< 24,2 >}) formed a connection component. We can view C to consist of 2 connection
components. The dummy refinement leading to T¢ ‘glued’ the two connection components together.
In general a basis C of conditions of length < h can contain arbitrarily many connection components.
However the fact that all conditions are pairwise incompatible ensures that any sequence of dummy
extensions (each of which reduces the number of connection components by one) will never extend
any condition beyond a length of AZ.

First I show a weakened version of lemma 30. In this version the height A of the trees is only
required to be bound by h?. This version is actually sufficient to prove most of our general results.

Proof of weakened version of lemma 30: Notice that C = C + a — a. Suppose that we obtain
C' from C by replacing a € C by ‘dummy’ extensions in a point u. If we chose a suitable u we reduce
the number of connection components by one. If u = d for some d € D we have aU{< d,» >: 7 €
R\ ran(a)}. If u = 7 for some 7 € R we have a U {< d,7 >: d € D\ dom(a)}. In both cases we
have the equation: C' = C 4+ (d1,71)(d2,72) .. .(dn,ma)(w) — (d1,71)(d2,72) . . .(dh—1,7h—1)(dn) Where
a={<dy,r1 > <da,m2>,...,< dp,7p >}. If C' only contains one connection component it is a
decision tree and thus C can be written as a linear combination 7' — Ty + T of decision trees (just
let T :=C', Ty = (d1,71)(d2, 72) - - - (dn, 7a)(w) and Ty := (da, 71)(d2, 72) - - - (dh-1, 7h-1)(dR))-

Suppose that the conditions in C’ cannot be organized into a decision tree. There must be g € C’
and a point d € D (or 7 € R) such that if we replace § by all dummy extensions a U {< d,r >}
where 7 € R\ ran(8) (or d € D\ dom(f)) then the resulting collection C” contain one less
connection component. Again by the same idea as before we can write C" = C' + T3 — Ty where
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T 1= (dy, ) (dhy ) .. (dy, vh)(u), where Ty 1= (df, r1)(dh, ) .. (dh_y,7h_1)(d4) and where § =
{< di,r} > < dy,ry >,...,< dj,r, >} In the case C" is a decision tree T” we have C =
T'—Ty + Ty — T5 + T4.

As T already pointed out, this procedure terminates before any condition gets length A(h —1)/2 (or
just h?). Thus eventually we construct a forest of trees 77,75, ..., T, which (counted with sign)
contains one tree and which contains the same conditions as C. a

For the sake of completeness and to make sure later results appear in their full strength let me
show the full version of lemma 30.

Example (part 3): Now consider C* which contains the same conditions as C except that {<
2p,2r >} have been replaced by all conditions of the form {< 2p,2g >,< 3p,rr >} where
rr € R\ {2gr}. Notice that C* is a basis, and that the conditions in C* can not be organised as a
decision tree. If we follow the approach above and make dummy refinements trying to make 1p
into a root, we cannot keep all trees down below a height of 3. However it turns out that we can
write C* = [1D; QR] + (QR?, 2D)(3D?) — (QR?, 2D)(1D?) + (1D?, 1R)(2R?) — (ID?, 1R)(2D?)- All trees
have height 2 so our refinement method is not optimal. &
The idea to solve the general case is to avoid making any refinements! It turns out that this can
be achieved by repeately reorganising the tree during the construction.

Proof of lemma 30: First notice that any basis of height 2 can be written as a linear combination
of trees T; of height < 2 such that the linear combination contains the surplus of exactly one tree.
Assume (as part of the induction assumption) that there exists a basis C of conditions of length < h
which cannot be written as a linear combination of trees of height A. Clearly C must contain some
conditions of length > 3. We now embed C into a decition tree which might get height somewhat
higher that h. Pick any semi-root d € D (or r € R). For each 7 € R (or d € D) consider the
collection C1<@">} of conditions in C which are compatible to {< d,r >}. Pich a semi-root for
C{<d7>} At any stage we have constructed a tree where each node has associated a condition a.
If there exists B € C for which f ¢ o we can choose a new semi-root for C*. Notice that each
condition a € C have one pair < d’, 7' > assigned to an edge leading to a leaf. Now pick any § which
is assigned to a grandfather of a leaf. The basis C® consists of conditions which have height < 2.
Thus we write C as a linear combination X; A;C; with ¥; A; = 1 and where each C; have one more
grandfather node (than C) for which C° is a decition tree. Let T(C) denote the maximal number of
grandfather nodes for which C? is a decition tree. Assume as part of the induction assumption that
we chose our counter example C such that T'(C) takes the largest possible value among the counter
examples of height < h. If T(C) equals the number of ‘leaf-grandfathers’ we can get (by removing
the dummy questions at the top) a basis C’ of conditions of length < A — 1 which cannot can be
written as a linear combination of decition trees of height < A — 1. This contradicts the induction
assumption. a

A g-exceptional system C1,Ca,...,C, (of height < h) is a collection of (D, R)-labeled |D|/2-bases
(of heights < h) in which each condition appears 0 modulo ¢ times while u # 0 modulo g.

Corollary 32 There exists a g-ezceptional system C1,Cz,...,Cy of (D, R) labeled |D|/2-bases of
height < h if and only if there exists a g-exceptional forests F of (D, R)-labeled trees of height < h.

Proof: According to lemma 30, we can translate C into a forest F¢ which contains 1 modulo ¢
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trees and which contains the same conditions (when the multiplicity is counted modulo ¢) as C. All
conditions in F¢ have length < h. Let F := U; Fe,-

The converse implication follows trivially from the observation that the conditions in a (D, R)-

labeled tree T form a (D, R)-labeled |D|/2-basis. O

4.6 Generic systems

Fix an integer ¢ > 2. Let D, R and J be (big) finite sets. Assume that |J| # 0 modulo ¢g. A
(D, R, J,q)-generic system is an assignment A — C4 which to each g-element subset A C J assign
a collection C4 of (D, R)-conditions such that Vj € J Uas; C4 is a |D|/2-basis.

During my Doctoral work in Oxford I realized that the next technical lemma would ‘give me
everything’. To my friends I always referred to this lemma as “lemma 49”. Originally I had
thought “lemma 49” would be relatively easy to show (at least compared to the other parts of the
proof), however the lemma surprised me in resisting any formal proofs. Eventually I decided to
settle down for a smaller result for my thesis. But “lemma 49” still haunted me in my sleep. I often
recalled the Danish Philosopher Piet Hein’s wise words: A problem worthy of attack bites back.

“Lemma 49”: If |R| — |D| = ¢*, then there are no (D, R, J, q)-generic systems in which all
conditions have length < k.

Proof: Assume that G is a (D, R, J, q)-generic system and assume that |R| — |D| = ¢*. For each
J € Jlet C; := Uas; Ca. As each A C J have |A| = ¢ the collections C1,Ca,...,Cj; must be a
g-exceptional system. But then according to corollary 32 there must exist a g-exceptional forest of
(D, R)-labeled trees of height < k. But according to Theorem 29 there are no g-exceptional forests
of height k (< 2%~1). O

We can actually improve “lemma 49” to the following equivalence!!

Theorem 33 The following are equivalent:

(a) There exists J and a (D, R, J, q)-generic system of height < h

(b) There ezxists a q-exceptional (D, R)-system of height < h

(c) There exists a g-exceptional forest of (D, R)-labeled trees of height < h.

Proof: (a) = (b): For each j € J let C; := Uas; Ca. According to the definition each C; is a
|D|/2-basis. Thus if |J| # 0 modulo g the collection C1,Cs,...,C)s is a g-exceptional system.

(b) = (c): Corollary 32.

(c) = (b): Earlier observation.

(b) = (a): Assume that C;, j € J is a g-exceptional (D, R)-system of height < h. Take all the
conditions in Cy,Cy, . . ., (|, and put them into disjoint classes each containing g identical conditions.
Let C4 (where A = {j1,72,...,74}) consist of all the conditions a for which g-identical copies of a
was chosen from Cj,,C;,,...,C;,. We need to show that the map A — C4 for each 7 has Uas; Ca
is a |D|/2-basis. But each condition in C; appears exactly once in Ugs; C4. Thus Ugs; C4 = C; is

a | D|/2-basis. O
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4.7 Other combinatorial preparations

In this section we consider quite a different problem related to the sets D and R. We assume that
|D| < |R| and that |R| — |D| € |D|°). Let n := |D| and let R, denote the collection of all partial
bijections p : D — R with the probability measure which arises through the following procedure:

(i) Choose a set D' in D by picking each point with probability p
(ii) Choose randomly a set R’ C R such that |[D\ D'| = |R\ R/|.
(iii) Choose randomly a partial bijection p : D — R with dom(p) = D \ D’ and ran(p) = R\ R'.

We follow [KPW 95] and will say set S of conditions refines a set H of conditions if for each a € S
either there exists A € H such that o O h or a is incompatible to all conditions in H. The following
lemma is a minor modification of lemma 2D in [KPW 95].

Lemma 34 Let H be a collection of conditions of length < t. Assume that p < 11@ and pn > 40s.
Then for random p € R,, with probability at least 1 —e(16p*n3t)* —2-9MWrn the following proposition
holds:

There exists a decision tree Ts of height < 2s which refines all the conditions in HP. Furthermore,
this remains true even if we add the requirement that |p| < n — %pn.

First a few comments. The above formulation of the lemma is slightly strengthened compared to
lemma 2D in [KPW 95]. First, the conditions in the 2s-complete system S of lemma 2D were only
chosen to be a basis, while it was actually shown that S could be chosen as a decision tree. Second,
the requirement that |R| = |D| + 1 has been weakened to the requirement that |R| — |D| < n°(!)
where o(1) denotes an infinitesimal non-standard rational.

For our application let £ > 5 and ¢ be finite numbers. Let p = n}/*~1 and notice that the probability
is at least 1 — e - (1/n)*(1=%/%¥), We can get rid of all negation by pushing these to the input gates
(using the rules = A - =V and =V = = A). And then using the fact the —z4, can be ‘expressed’

as Vyi#, ©4,. Now by combining this with a standard switching lemma application we get

Lemma 35 Assume that 11, s, ..., 1%, is a collection of at most n*' circuits. Assume they all
have size s < n* and depth d < h. Then there exists s = s(k1,kq,d) and € = e(ky, ko, d) such that
if p: D — R is chosen randomly from R, with positive probability all circuits can simultaneously
be ‘expressed’ as disjunction of s-conjunctions.

5 The model theoretical construction

5.1 Forcing setup

In this section we modify the construction in [Riis 93B] and [Riis 94A]. Let M be a countable
non-standard model of Th(N) over a countable first order language L which extends the language
of arithmetic. We have fixed sets D := {1,2,...,d},R:= {1,2,...,7} C M, d,7 € M\ w. Let Ly
denote the language L extended with a constant c,, for each m € M. Let Ly (f) be Ly extended
with an unspecified unary function symbol.

We say that p: D — R is a partial bijection if p maps its domain bijectively onto its range.
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For k € N let Py(D,R) := {p : D — R and (d — |dom(p)|)* > d}. We define P(D,R) :=
UgeN Pr(D, R). The elements in P(D, R) are ordered under inclusion. An element p € P(D, R) is
called a (forcing) condition. We use letters A, B,C, ... to denote subsets of P(D, R). When (D, R)
is clear from the context we write Py := Pi(D, R) and let P := P(D, R).

Notice that P; C Py C ... C P, C.... C P, for each 7 € w. The idea is to use (P, C) as the set of
forcing conditions.

We say that D C P is denseif Vg € Pdh € D h D g.

We say that D is quasi-definable if there exists a formula 6(z) € Ly U {R,,} such that D := {m €
M : M | 6(m)} (the relation R, is defined by R,(a) < a € w). Notice as an example that P is
dense and quasi-definable (although P not is Lyj-definable). We say that pg C P is a generic filter
if (i) VaepeV8ePpBla—pepg (i) Va,8€pgdy€Epay2aAy2f,and (ili) For
D C P dense and quasi-definable pg N D # (.

We use the abbreviation fg := Uaep, .
Lemma 36 If pg C P is a generic filter, then pg : D — R is a bijection.

Proof: The only problem is to show dom(jg) = D and ran(pg) = R. For an arbitrary d € D and
r€ Rlet Dy, :={a € P: d € dom(a)Ar € ran(a)}. Notice that D, is dense and quasi-definable
so Dy, N pg # 0. Thus for each d € D and r € R there exists ag, € Dy, N pg, and thus d €
dom(pg) and 7 € ran(pg). ]

Lemma 37 For each pg € P there exists a generic filter pg C P such that py € pa.

Proof: Recall that both M and L are assumed to be countable, so there are only countably many
quasi-definable dense sets. Let these be D;,Ds,.... According to the definition of denseness there
exists a sequence of conditions p; C py C .... € P with p; € D;, 7 =1,2,... and p; D pg. Clearly
po € pc:={p: p C pi for some k € w} is a generic filter. O

For a sentence ¢ € Ly(P) we define the forcing relation | F by letting
plF ¥ iff (M,pe) = ¢ for all generic filters pg 3 p.

Lemma 38 If(M, pg) = ¢ for a generic filter pg, then there exists pg € pg C P such that po| b .

Proof: By use of induction on the logical complexity of a general formula (Z), it is not hard to
show that {(@,p) € M” X P : p| F 9¥(cz)} is quasi-definable. Continuing this argument for each
L (P)-sentence 9, we notice that D := {p € P: p| F ¥ V p| F =9} is both quasi-definable and
dense. For the required pg take any pg € pg N D. a

Lemma 39 For each bounded ¢ € Ln(f), p| o iff p| F (e)F = 1.

Proof: Induction on the number of logical constants in ). O
Recall that two conditions o and § are incompatible (o L ) if there exists d € D : a(d) # B(d)
or there exists 7 € R: a~!(r) # 871(r). Two conditions a and 3 are compatible (a||3) if they not
are incompatible. A subset B C P is orthogonal if Vo, € B a # 8 — a L  and is complete if
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Vp € Pda € B p|la. A basis is a collection B C P which satisfies both these conditions (i.e. is both
Orthogonal and Complete). Finally we let ||B|| := maxgep(|dom(3)]).

The next lemma allows us to repeat estimates in a scaled down version. More specifically it allows
us to assume that 0| F 7 in cases where po| I 9 for some pg € P. This is because the lemma allows
us to replace (D, R) by (D', R') where d’ := d — |dom(po)| and then smoothly pass from P(D, R)
to P(D', R').

Lemma 40 Fiz p € P, let D' := D \ dom(p) and let d' := |D’'|. Define Px(D',R') := {p :p is
a partial bijection of D' and (d' — |dom(p)|)* > d'}. Let P(D',R') := Urew Pr(D',R'). Then
P(D',R") = P*, where P? :={p: p: D' — R' is a partial bijection and pU p € P}.

Proof: First, we show P? C P(D’,R'). Suppose that g € P?. There exists kg € w such that
7 < d < (d-dom(5 U p)|) = (d— |dom(p)| — |dom(7)])

= (d' — |dom(p)|)*. So p € Py, (D', R') C P(D', R').

Second, we show that P(D’, R') C P*. Suppose that p € P(D’, R'). There exists k € w such that
d' < (d' —|dom(p)|)". As p € P there exists I € w such that (d— |dom(p)|)} > d. Thus we must have
(3~ dom(5 U p)|)¥ = (d |dom(p)| — |dom(B))¥ = (@ — |dom(F))" > (&) = (@~ |dom(p)])' > .
Thus pUp € P and p € P*. a

Lemma 41 Suppose that B is a basis for P and H C B. Suppose also that ||B|| € w. Then
(a)  p|F (Vhen R)F =1 iff p is incompatible with all conditions h' € B\ H.
(b)  plF (= Vhen R)E =1 iff p is incompatible with all conditions h' € H.

Proof: (a) =: Suppose that p| b (View R)F = 1, but p is compatible with A’ € B\ H. Now
p' == pUR' € P and as B is a basis A’ must be incompatible to all conditions in H. Clearly p’ O A’
so p is also incompatible with all conditions in H. But then (Vhex h)? = 0 for each generic filter
pc > p' (which exists by lemma 37). This contradicts p| - (Vaer 2)F = 1.

(a) <: Assume that p is incompatible with all A’ € B\ H. Let pg 5 p be any generic filter (which
exists by lemma 37).

Let D := {p' € P: (3n' € H Rh'||p’) or p'Lp}. Notice that D C P is dense and quasi-definable.
There exists a € D N pg, so there exists h € H with A C a C pg.

(b) = / (b) < are proved by proofs very similar to (a) = / (a) <. |
Lemma 42 Let €1,€3,....,6, u € M, be an M-definable sequence of Boolean circuits, each of the
form €; := Vypen, h. Let By, ..., By be an M-definable sequence and suppose that t € w such that:
(a) for each j =1,2,..u B; CP, is a basis for P,

(b) for each 7 =1,2,.,u ||B;|| < t,

(c) for each j =1,2,...,u, H; C B;.

Then for every generic filter pg either

(a) forall 7 €4{1,2,..,u}, ej’?G =0, or

(b) there ezists jo < u such that eg-’OG =1 and eg-’G =0 for each j < jo.
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Proof: Let D := {p € P: (JjodB € Hj, Bllp AVy € UjcjoH; p L y) or (Vy € Uj<uH; p L 7)}.
Clearly D is quasi-definable. For each pg € P, if pg is compatible with some 8 € U;H;, then there
must be a smallest jg such that pg is compatible with some 3 € 'H;,. Here we use the least number
principle which is valid in M. Now p := hU pg € P, and thus p € D. So D is dense. Thus there
exists p € pg ND. This condition p is incompatible with all » € H;, 7 < jo. As pg 2 p D h € H;,
clearly (Vhen,, h)Pe = 1. O
Recall that M is a countable non-standard model of Th(N) over a countable first order language
L. As above we have fixed D, R C M with both |D| and |R| non-standard numbers. As above the
set P of forcing conditions consists of partial bijections p : D — R with |dom(p)| < d - dw for some
k € w. Now a direct application of lemma 35 gives

Lemma 43 (key lemma) Let 61,65, ...,0, be an M-definable sequence of depth < d € w circuits
of size bounded by a fized polynomial in n.

Let pg € P. There exists p O po, p € P and an M-definable sequence €1, €3, ..., €, of circuits together
with an M-definable sequence By, Bs, .., B, and s € w such that

(a) forj =1,2,..,u each B;, is a basis for P,

(b) for 3 =1,2,...u each ¢; is of the form Viey, h for some H; C B;,

(c) for each j =1,2,...,u, 0; and €; holds in the same generic extensions of p.

(d) foreach j =1,2,..,u |[|B;]| <s.

If we combine the key lemma with lemma 42 we get:

Corollary 44 If 04,0,,....0, is an M-definable sequence of depth d € w circuits of size bounded in
a fized polynomial in n, then for any generic filter pg C P either

(a) forall 7 <u BfG =1, or
b there ezists jo < w, such that 0°¢ = 1 and 6°¢ = 0 for all 7 < 70.
Jo J

Corollary 45 If A — 04 is an M-definable map which maps every g-element subset A C J into
a depth d formula 8, which is bounded by some fized polynomial in d. For each py € P there
exists p O po, there exists s € w, and a M-definable map A — Cy which maps every gq-element
subset A C J 1into a collection of conditions Ca of length s such that 04 and Vpec, h holds in the
same generic extensions of p. In addition it is possible to ensure that the conditions in each C4 are
pairwise incompatible.

Proof: An elementary reformulation of lemma 43. a

Corollary 46 Suppose that there exists an M-definable map A — 04 of depth d circuits which are
all bounded by some polynomial in d, such that po| = “A — 0, defines a partitioning of J into
disjoint g-element subsets and |J| # 0 modulo ¢”. Then there exists a (D, R, q,J)-generic system.

Proof: Suppose that there exists an M-definable map A — 64 of depth d circuits of polynomial

size. According to corollary 45 there exists s € w, and a M-definable map A — C4 which maps every
g-element subset A C J into a collection C4 of conditions of length s such that 4 and €4 := Vpee, R
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hold in the same generic extensions of p. I claim that for each 7 € J Cjy := Uas; Ca is a |D|/2-
basis. To prove this claim first notice that all conditions in C; must be pairwise incompatible.
If C; contained two (different) conditions which were compatible, there would be sets A,B 3 j
with A # B such that some a € C4 are compatible to some § € Cg. But then a U S U pgo|
“A — 04 defines a partitioning which contains both A and B” violating the assumption that
po forces the map A — 04 to define a partitoning of J into disjount g-element subsets. Second
notice that it suffices to show that C; is a |D \ dom(pg)|/2 basis, as this would imply that it is a
| D\ dom(po)| — s? basis (using the earlier robustness results). But suppose that there exists p € P
with |p| < |D \ dom(pg)|/2 which is incompatible to all conditions in C;. This is a contradiction
because pgUp € P and in no generic extension of pgUp would 7 belong to any A in the partitioning.
a

Notice that we have the converse in the sense that:

Lemma 47 Assume that there exist a (D, R,q,J)-generic system A — C4 where all conditions
have length bounded by some standard number s.

Let Counts(q) = Vjes Aas; €4 V VaVazp,anpzo (€a N €B) where €4 1= Viec, h. Then any
bijection f : D — R produces a truth-tabel evaluation violation which makes Counts(q) false.

5.2 Proof of the main theorem

Proposition 48 Let P be an absolute propositional proof system. Then there are no polynomial

size bounded depth P-proofs of PHP:+qw(1)(bij).

Proof: Assume that there exists d € w such that for arbitarily large n there exists a sequence
1,92, ..., Py, of depth d formulas proving PHPZ+qr(n)(bij). By the compactness theorem there
would be a countable non-standard model M of first order arithmetic which for some non-standard
number n there would be a sequence %1, %2,. .., %, of depth d formulas which proves

PHP?  .(»(bij) (viewed within M). But then according to corollary 44 we must have jo < u

such that 'zﬁfog =1 and Qbfg = 0 for all j < jo. All axioms are absolute so %, cannot be an
axiom. All deduction rules are absolute so 7);, cannot be a consequence of any deduction. This is
a contradiction. O

Theorem 49 Let M be a countable non-standard model of Th(IN) over a countable language which
extends the language of arithmetic. Let ¢ > 2 be a standard integer. Let D := {1,2,...,d}, R :=
{1,2,...,7} be fized initial segments of non-standard length. Assume that 7 — d is a non-standard
power of q¢ and assume that 7 — d < n® for some non-standard infinitesimal 6. Let P the set of
forcing conditions be defined as above, and let f be any generic bijection f : D — R. There are no
(D, R, q,J)-generic system if and only if (M, f) satisfy the Count(q) principle.

Proof: Suppose that there exists a (D, R, g, J)-generic system i.e. suppose that there exists a
M-definable map A — Cy4 such that Uas; C4 is a |D|/2-basis. Now consider the collection
{A: (M, f) E ‘f is compatible to some a € C,;}. According to lemma 47 this defines a partitioning
of J into disjount g-element subsets violating the Count(g) principle in (M, f).

Conversely suppose that there are no (D, R, g, J)-generic systems. But then according to lemma
45 and lemma 46 for no d € w does there exists a M-definable map A — 64 which assigns depth d
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circuits of size bounded by a polynomial in |D| which can be forced to violate the Count(g)-principle.
O

Proof of Theorem 9: It suffices to show that the Count(q)-axiom sceme are always forced valid.
The Count(q)-axiom sceme is not absolute so propostion 48 does not apply. However if Count(q)
is forced false it follows from Theorem 49 that there exists a (D, R, J, ¢)-generic system where all
the conditions have length bounded by some fixed standard number h. Yet according to Theorem
33 this is possible if and only if there exists a g-exceptional forest of (D, R)-labeled trees of height
< h. But according to Theorem 29 (our classification of the g-exceptional forest) there are no
g-exceptional forest of height < 2/~! when |R| — |D| = ¢'. Thus if (and only if) [ is a non-standard
number each instance of the Count(g) axiom scheme always get forced true. a

Proof of Theorem 10: There exist a g-exceptional forest of (D, R)-labeled trees of height q*
(Theorem 29). Thus there exists of a (D, R, ¢, J)-generic system (Theorem 33) where all conditions
have length bounded by ¢®. This gives us a substitution instance counts(q) which comes out false
for any truth-tabel evaluation induced by any bijection f: D — R (lemma 47). O

To end I would like to thank J. Krajicek and P. Pudlak, for their many useful comments as well as
for their hospitality during my numerous visits in Prague. I would also like thank M. van Lambalgen
and D. Zambella for inviting me to Amsterdam where this work was completed. Finally I would
like to thank M. Ajtai. It has been a great pleasure to work on problems related to his work.
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