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Abstract

It is shown that the elementary principles Count(g) and Count(p) are logically independent in
the system TAg(a) of Bounded Arithmetic. Actually it is shown that Count(g) implies Count(p)
exactly when each prime factor in p is a factor in ¢. This answers a question by M. Ajtai.

1 The logic of elementary counting

“She loves me, she loves me not, she loves me,...” The final answer does not depend on the order
in which the leaves are pulled of. Every child who is familiar with the process of counting knows
that. The underlying logical principle states that a set A has a well-defined cardinality modulo 2.
Yet, the Count(2) principle can fail in quite strong systems of Arithmetic (Ajtai [2],[3]). Similarly
for the counting principle modulo p (=Count(p)) where she can be in p states of mind.

In 1962 Cohen invented the famous technique of forcing. He used the method to show the
independence of the continuum conjecture. Inspired by these ideas Ajtai showed (in [2]) that the
elementary pigeon-hole principle fails in certain models of the arithmetical fragment IAq(f). There
is an essential equivalent way of stating this result (Ajtai). Let T' be the theory which contain the
basic axioms in Peanos Arithmetic, but which are modified so there exists a largest element ¢
in the universe (with ¢ = ¢ + 1,ac = ¢ etc.). Then there exist a model M |= T in which the
pigeon hole principle (stated by use of an unspecified function symbol) fails. Ajtais result came as
a major break through. It became clear from Ajtais work (combined with the work of Paris and
Wilkie [18]) that there is a close link between provability in Bounded Arithmetic (i.e. Arithmetical
systems where the induction axiom scheme is restricted to formulas where all quantifiers appears
in the context Yy < #(z)... or 3y < #(z)...) and the necessary length of proofs of tautologies in
systems propositional calculus. The main novelty in Ajtais work (in [2]) was the mixture of forcing
and powerful probabilistic techniques.

The Count(p) versus Count(g) problem has various formulations and variants. The most famous
variant is from circuit complexity theory and was first formulated by Furst, Saxe and Simpser. It
asks (in the base case) whether there exist bounded depth, polynomial size circuits which counts
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the number of 1’s (in the input string) modulo p. This was answered (negatively) independently
in [12] and [1]. Later J. Hastad [13] gave a near optimal exponential lower bound. The question
becomes particular challenging if we also allow gates which can count modulo ¢g. R. Smolensky [25]
settled the case for different prime numbers g and p. The general classification is still open. It has
been conjectured (by Barrington, Beigel and Rudich) that the answer is positive exactly when g
contains all prime factors in p [5]. However even the simple case where ¢ = 6 and p = 5 is still
open.

One formulation of Ajtai’s problem (given in [10]) concerns the question whether for different
primes ¢ and p there exist arithmetical models M, which satisfies the Count(q) principle (stated as
a Ag-axiom scheme), but which does not satisfies the Count(p) principle? The otherwise powerful
algebraic methods by R. Smolensky [25] are not sufficient for this version of the problem. As it
turns out Ajtais version of the problem is technically more involved than the corresponding problem
for circuits. Still circuit complexity (especially the method of collapsing circuits by use of random
evaluations) is of major importance [15], [23].

In the first part of the paper we reduce Ajtai’s question to a purely combinatorial problem.
Actually (by elaborating on the ideas in [15]) it is shown that such a reduction (to a nice and
purely combinatorial problem) is possible even in the case of composite numbers, and in the case
where the underlying axiom system have considerable more power than that of IAq(f).

In the second part of the paper we solve the combinatorial problem and thereby settle the
Count(gq) versus Count(p) problem. ! The classification agree with what has been conjectured for
the circuits. I.e. the answer is positive exactly when all prime factors in p belong to gq.

1.1 A forest containing 16821302548060 trees

The first main result in the paper links the Count(p) versus Count(q) questions to a class of purely
combinatorial problems.

Suppose T1,Ts,...., T, is a collection of specially labelled trees (i.e. a forest). Suppose that
each type of branch appears 0 modulo ¢ times. Does ¢ divide u? This of course depends on the
underlying labelling set and the specific rules of how the trees are labelled. I consider labellings
which are determined by two numbers p and n. A naive conjecture states that for each (g,p,n)
(excluding trivial counter examples) there are only such forests when ¢ divides the number (=u) of
trees in the forest.

It turns out that there exist “exceptional” forests which violate this naive conjecture. As an
example when ¢ = 2 and p = 4, I show that for each n > 9 (not divisible by 4) there is a forest where
each type of branch appears an even number of times, while the forest contain an odd number of
trees. I give a concrete non-trivial example (n = 10) which contains 635 trees. When ¢ = 3 and
p = 9 there are also exceptional forests for each n > 28 (not divisible by 9). In these each type of
branch appears 0 modulo 3 times, yet the number of trees is not divisible by 3. The non-trivial
cases appear when n = 3 modulo 9 or n = 6 modulo 9. The smallest concrete (non-trivial) forest
I have found for ¢ = 3 appears when p = 9 and n = 30. The forest contains 16821302548060 trees
when the trees are broken down to a special normal form.

'P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak [6] solved the same combinatorial problem
independently.



The first main result in the paper shows that the existence of such exceptional forests and
the existence of (non-trivial) implications between Count(q) and Count(p) are two sides of same
coin. The two examples correspond to the fact that Count(2) implies Count(4) and that Count(3)
implies Count(9). I show that Count(g) implies Count(p) in systems of Bounded Arithmetic when
all prime factors in p appears in ¢. According to the first main result a priori there must exist
exceptional forest for all such ¢ and p. In the paper it is shown how one can construct such forests.
Furthermore it is show how one can obtain proofs (in systems of Bounded Arithmetic) of Count(p)
from Count(q) by use of these forests.

Early in this research the exceptional forests caused a major complication. At that stage all my
attempts to collapse forests to particularly nice normal forms failed. I applied various probabilistic
arguments which however did not quite work. Essentially the exceptional forests was the only
obstacle. First when I managed to isolate these asymptotically, I was able to complete the analysis.

At present I do not have a complete picture of all exceptional forests. However it turns out that
the asymptotic classification in this paper is sufficiently strong to provide a complete solution of
the Count(p) versus Count(g) problem in the base-case (i.e. when the terms in underlying language
have polynomial growth rate).

1.2 Motivation

The counting principles themselves are of course trivial. Or more specifically they hold in the
category of finite sets. There are various reasons to examine these elementary counting principles.

First of all they play an important role in Bounded Arithmetic. These are systems where the
induction principle is restricted to properties of a certain (well-defined) computorial complexity.
Thus it is not surprising that Bounded Arithmetic provide a very natural and important interface
between mathematical logic and computational complexity.

An important (but apparently very difficult) research project is to understand which parts of
number theory holds in models of Bounded Arithmetic? This type of question was first studied
by J. Paris, A. Wilkie. As pointed out both by A. Macintyre [16], by J. Paris, A. Wilkie and A.
Woods [17] and by A. Berrarducci and B. Intrigila [7] many basic number theoretical facts are
provable in system of Bounded Arithmetic. Other facts require new proofs. It seems not unrea-
sonable to expect that the provability (in specific systems of Bounded Arithmetic) of elementary
number theoretical statements often will turn out to be intimately linked to deep number theoret-
ical problems/theorems. At present there are only sporadic suggestions of this. One such (which
follows as a corollary to S.Buss’ main result in [8]) is that if a certain fragment (often denoted by
S1) proves that the set of prime numbers is in NP (this can be proved in ordinary Arithmetic),
then the prime numbers must actually be polynomial time recognisable. At present this is only
known conditionally by assuming the validity of the General Riemann Hypothesis [16]. A stronger
fragment (often denoted S;) are know to show the infinitude of the set of prime numbers. This fact
goes hand in hand with Sylvester’s prime number theorem [17]. Besides this consider the quantifier
elimination phenomenon (the strength of eliminating logic!). Clearly Bounded Arithmetic does not
have quantifier elimination. However, one might still be able to eliminate many of its logical-like
features. Perhaps it is possible to get our hands on the underlying unifications features arising from
the induction schema. It is not unreasonable to expect Bounded Arithmetic to be tight up with
the prestigious discipline of number theory (see [16] for a further discussion).



The work by [17] and later [7] show that the elementary counting principles play a cental role
in Bounded Arithmetic. In general the status of the elementary counting principles in models of
Bounded Arithmetic seems to be a very deep problem. This problem could also be linked to deep
questions and conjectures in classical number theory.

This paper consider the special case where all terms of the underlying language have polynomial
growth rate, and contain at least one unspecified function or relation symbol. The presence of an
unspecified function (or relation) symbol softens up the general problem. It also remove the problem
from number theory and move it into a domain where methods from logic (forcing) is very powerful.

Second, systems of Bounded Arithmetic are linked to “low complexity reasoning”. One funda-
mental problem is to clarify the relation between automated versus intelligent reasoning. It seems
natural to suggest that automatic reasoning (when this implemented in praxis) is only able to give a
proper representation of objects of low complexity. The elementary process of counting introduces
unpleasantly high complexity. A computation involving a counting task might (asymptotically)
require exponentially many steps as a function of the length of the input. In practice this very
soon becomes intractable for computers. Thus in a low complexity world we cannot assume that
we are be able to count. In order to verify (purely computationally) that the cardinality of a set
A is unique, we would have to show that all bijections f : A — {1,2,...,m} requires the same m.
This is computationally intractable even for quite small sets A.

Finally another (related) problem is to examine the efficiency of propositional proof systems.
This type of problems has already been studied intensively in the literature [2], [3], [11], [15], [18],
[20], [23]. In S. Cook and A. Recknow [11] it was shown that the efficiency of propositional proof
systems is a natural way of studying the NP versus co-NP problem. Then later Paris and Wilkie
[18] linked these problems to Bounded Arithmetic. And then Ajtai [2] showed that the problems
also are tight up with methods and problems from circuit complexity. Recently a fascinating ‘ultra
filter construction’ by Razborov [21] even suggest links to higher set-theory. In any case the study
of the complexity of elementary counting provides some of the strongest known results in the field
of circuit complexity.

1.3 The main results

In the following discussion let L be a countable first order language. Assume that L contains
function symbols for the basic arithmetical operations ‘+’ and ‘-’. Also assume that the behaviour
of terms and (the specified) relations are specified through a suitable set ¥z of purely universal
axioms. And assume that L contains at least one unspecified relation symbol.

An axiom system (= IAg(L) or just IAg when L is clear from the context) of Bounded Arith-
metic consists of the axioms ¥y together with the celebrated induction axiom schema, (6(0) A
Ve (0(z) = 6(z+1))) — Vz 6(z). However, in Bounded Arithmetic (unlike in ordinary Arithmetic),
we require all quantifiers in each 6 to be bounded by terms in the language L. More specifically,
each quantifier is required to appear in the context Vz(z <t — ... or Jz(z <t A ...

The elementary pigeon-hole principle (=PHP,; p € N) states (in one of its many formulations)
that for no n do there exists a bijection from {1,2,...,n} onto {1,2,...,n + p}. More specifically,
the Ag-PHP, axiom schema states (for each bounded formula 6(z,y)) that,

Vz (Ve < z3ly<z+pb(z,y,2)V-Vy < z+pile <z0(z,y,z)). A weak form of the pigeon-hole
principle is obtained by only considering monotone bijections. It is not hard to show that this form



of the pigeon hole principle is equivalent to the usual induction principle.

The Count(p) principle (for a fixed number p € N) states that if {1,2,....,n} is divided into
disjoint subsets each containing exactly p elements, then p divides n. More specifically, the Ag-
Count(p) principle is the schema,

Vz (Vo1 < 2329,z < 2 (22 < 23 < ... < 2y AO(T1,22,...,25) A 21 = T2 A oeen A D2y =
zp)) =y y-p=2z), 0(z1,...2,) € Ag. In the first section I show,

Theorem [20] [23]
Assume that p > 2. Let L be any language where all terms have sub-exponential growth rate.
Then there exists a model M* in which

(1)  The Count(p) principle fails.
(2)  All Ag-pigeon-hole principles holds.

A similar result was proved by Ajtai in [3], but only in case where all terms was assumed to have
polynomial growth rate.

In section 2, the next section we construct the model M*. And in the next two sections it is
shown that M* has the required properties. Actually in section 4 it is shown that,

Theorem Besides (1) and (2) the model M* satisfies the Ag-Count(q) principle ezactly (under
some weak extra assumptions) when there are no forest Ty, Ty, ... Ty, of (p,n)-labelled trees where all
branches appear 0 modulo q times, but v # 0 modulo q.

The precise formulation of the result link the growth rate of terms in the underlying language L
to an ectra condition on the asymptotic height of the trees.

In section 5 we develop a general method to produce exceptional forests. It is shown that exceptional
forests exist (for ¢ and p) when all prime factors in p divides ¢g. Furthermore the construction of
such forests can be carried out inside any model of Bounded Arithmetic, so we get the following
positive part of the classification.

Proposition Let M* be a model of Bounded Arithmetic in which the Ag-Count(q) principle holds.
If all prime factors in p divides q, then M* satisfies the Ag-Count(p) principle.

In section 6 we return to the main problem. This is to show that Count(p) not is a logical conse-
quence of Count(q) when p contains a prime factor not in ¢g. This is shown (in the case all terms
have polynomial growth rate) by showing

(1) For each exception g¢-forests Ty, T5, ..., T, of (p,n) trees, one can construct an exceptional g¢-
forest T{,T;, .., T, of labelled trees related to the PHP «-principle. No tree in this new forests has
higher height than all trees in the old forest.

(2) Suppose that T}, T3, ..., T, is an exceptional g-forest of decision trees for the PHP x-principle.
Then at least one of the trees has height > k.
Combining this we get,

Theorem Suppose that ¢ and p are fized. Suppose that p contains a prime factor which does not
divide q. For each h there exists ny, such that for each n > ny there are no exceptional q-forests of
(p, n)-labelled trees which all have height < h.

Finally in section 7 I combine this result with theorem 1.3 and proposition 1.3. This gives the full
classification,



Main Theorem (formulation 1) Let 7 be any system of Bounded Arithmetic over some countable
language L. Suppose that L in addition to containing the language of arithmetic also contains at
least one undefined relational symbol. Suppose that all terms t in L have polynomial growth rate.
Then for all g,p € N the following are equivalent:

(a)  There exists a model M of T in which Count(q) holds and Count(p) fails.
(b)  There exists a prime factor in p which does not appear in gq.
The result has various essentially equivalent formulations.

Main Theorem (formulation 2) Let ACA™P be the following modification of the celebrated
system ACA. As ACA the system ACA'"P has the full arithmetical comprehension. And it is
equipped with the full induction aziom for sets. The “only” difference between this system and the
normal second order Arithmetic is that the basic universal azioms are modified so the that universe
contains a largest (unspecified) number c. All basic operations are modified (e.g. ¢+ 1 =¢). Any
list of purely universal arioms might also be added. Suppose that the aziomatisation is non-trivial
e.g. allows an infinite model. Then the following are equivalent:

(a)  Count(p) holds in all structures which satisfies ACA*P and the Count(q) principle.
(b)  All prime factors in p appear in q.
Another formulation states that,

Main Theorem (formulation 3) Let P be one of the usual textbook systems in Hilbert style
propositional logic. Let Countscheme(q) denote the substitution aziom scheme which arises from the
canonical Booleanization of the Count(q) principle. Let P’ := P+ Countschema(q). Then there are
polynomial-size bounded depth P’-proofs of Count(p) ezactly when all prime factors in p divide q.

In all formulations the negative part of the classification has a heuristic explanation. The analysis
shows that when k becomes large, it becomes arbitrarily difficult? (but as it turns out never impos-
sible) to show PHP « from Count(g). On the other hand if p contains a prime factor not in ¢ it is
uniformly (in k) easy to show PHP x from Count(p). So in this case Count(p) is not a consequence
(a bounded depth polynomial-size consequence in formulation 2) of Count(g) in this case. This line
of research is developed further in [24].

Finally we mention the recent and independent developments in [4] and [6].

2 Constructing the model

2.1 Translating formulas into circuits

Let M be a countable non-standard model of Th(IN) over a countable first order language L
(which extends the language of arithmetic). Let p € w, p > 2 and let I := {1,2,...,n} C M,
n € M\ w be fixed. Here w denote the set of standard integer in M. As usual a set A C M
is said to be M-definable if there exists a formula ¢($,l_;) with parameters b from M such that
A={aeM:M E 9(a,b)}. For bounded sets A (i.e. sets where for some mforalla € A: a < m)
this definition is language independent. More specifically a set A C M is M-definable if and only

there exists ¢ € M such that a € A exactly when a belongs to the sequence coded by c.

2Measured by the height of the corresponding forest.



Definition 2.1.1 For each A C I with | A |= p we introduce a variable p4. The set of all such
variables is denoted by VAR7 . &

Definition 2.1.2 A (Boolean) circuit w (with input variables in X') of size s(7) and depth d(7) is
defined inductively as follows:

(a) The constants ‘0’ and ‘1’ are circuits with s(‘1’) = s(‘0’) = d(‘1’) = d(‘0’) = 1.

(b) Each p € X is a circuit with s(p) = d(p) = 1.

(¢) If m is a circuit, then =7 is a circuit with s(—7) = s(7) + 1 and d(—-7) = d(7) + 1.
(d) If my,ms,...,, are circuits, then A;m; and V,7; are circuits with s(A;7;) = s(V;7;) = 1+

¥; s(m;) and d(A;7;) = d(V;7;) = 1 + max;d(~;). L )

Definition 2.1.3 Let By(X) denote the (Boolean) circuits = with input variables X of depth
d(m) < d. Let B,(X) 1= Ugey Ba(X). &

Definition 2.1.4 For ¢ € B.,(VAR;,) and p : VAR, — {0,1} (neither 4 or p are required to
be M-definable), we define the truth-table evaluation 1° inductively as follows:

(2) e =0, 1°=1.

(c) (-7) =1iff 7° = 0.

(d) (Ajm5)P = 1iff 77 = 1 for all j.

(e) (Vjm;)P = 1iff 7r§-’ = 1 for some j. &

Let Ly be L extended by a constant ¢, for each a € M. Let Ly (P) be Ly extended with an p-ary
relation symbol. There exists a canonical translation of Bounded Lyj(P)-sentences into circuits in

B.,(VAR;,):

Definition 2.1.5 For each sentence ¢ € Ly (P) we define € € B<o (VAR ;) inductively as fol-
lows:
(a)  For any k-ary relation symbol (# P): €gqa,,....a) :='1"if M = R(a1, .., ax), ‘0’ otherwise.

(b) €P(a1,..,ap) ‘= P4 if A={a1,...;a,} C T and | A|=p, ‘0’ otherwise.

(c) €y 1= g,

(d) Exva! 1= €x V €t

(e) Exnn! ‘= €x N €

(f) €3z(z<unb(z,u)) = Va<u €8(a,u)"

(g) 6\'/:1:(:1:§u—>€(1:,u)) = /\G.S’u. Ee(a,u)' *

Notice that if ¢ € Ly(P) has < d quantifiers, all bounded by ¢ € M, and % contains k logical
connectives, then s(ey) < kt? and d(ey) < d + k.

Lemma 2.1.6 Suppose that P is a partitioning of {1,2,...,n} into disjoint classes each containing
ezactly p elements. Let pp : VAR;, — {0,1} be defined by A € P — pp(pa) = 1. Then for
¥ € Lv(P) the following statements are equivalent:

(a) (M, P) |= 9.

(b) (ey)?? = 1.

Proof: Induction on the number of logical constants in ). O



2.2 The forcing set up

As above let M be a countable non-standard model of Th(IN) over a countable first order language
L which extends the language of arithmetic. We have fixed p > 2 and I := {1,2,..,n} C M, n €
M\ w. Let Ly and Ly (P) be defined as above.

Definition 2.2.1 We say that p is a partial p-partitioning if

(a) VAep ACI.

(b)  Vdep|Al=p

(c) VA, BepA#B—-AnNB=0.

Let Set(p) := Uae, A C 1. &

Definition 2.2.2 For k£ € N let
Pp(I):={p: pis a partial p — partitioning of I and (n— | Set(p) |)* > n}.

We define P(I) := Ugen Pi(I). The elements in P(I) are ordered under inclusion. An element
p € P(I)is called a (forcing) condition. We use letters A, B,C, ... to denote subsets of P(I). When
I is clear from the context we let Py := Pi(I) and let P := P(I). )

Notice that P; C P, C ... C P, C .... C P, for each r € w. The idea is to use (P, C) as the set of
forcing conditions. As in [22]:

Definition 2.2.3 We say that D C P is denseif Vg € PIh e D h D g.
We say that D is quasi-definable if there exists a formula 6(z) € Ly (R,) such that D := {m €
M : M |= 6(m)} (the relation R, is defined by R,(a) < a € w). )

Example 2.2.4 P is dense and quasi-definable. P is not Lyi-definable.

Definition 2.2.5 We say that pg C P is a generic filter if

(1) VaecpeVBeP B Ca—penpg.

(ii) Va,B € peIy € pa ¥ 2 a Ay 2 6.

(iil) For D C P dense and quasi-definable pg N D # (.

We use the abbreviation fg := Uaep, . &

2.3 Generic objects
Lemma 2.3.1 If pg C P is a generic filter, then pg defines a partition of {1,2,...,n} into disjoint

p-subsets.

Proof: The only problem is to show Set(pg) = I. For an arbitrary w € I'let Dy, :={a € P: u €
set(a)}. It is straightforward to show that D, is dense and quasi-definable so D, N pg # 0. Thus
for each u € I there exists a, € Dy N pg, and thus u € Set(pg). O

Lemma 2.3.2 For each pg € P there exists a generic filter pg C P such that pg € pg.



Proof: Recall that both M and L are assumed to be countable, so there are only countably many
quasi-definable dense sets. Let these be D1, Ds,.... According to the definition of denseness there
exists a sequence of conditions p; C py C .... € P with p; € D;, 7 =1,2,... and p; D pg. Clearly
po € pc:i={p: p C pi for some k € w} is a generic filter. m|

Definition 2.3.3 For a sentence 9 € Ly(P) we define the forcing relation |- by letting
p|Fv iff (M,pg) = 9 for all generic filters pg 3 p. &

Lemma 2.3.4 If (M, pg) = ¢ for a generic filter pg, then there exists po € pg C P such that
po |F .

Proof: By use of induction on the logical complexity of a general formula (Z), it is not hard to
show that {(@,p) € M” X P : p |F ¥(cz)} is quasi-definable. Continuing this argument for each
Ly (P)-sentence ¢, D := {p € P: p|F 9 Vp|F -9} is both quasi-definable and dense. For the
required pg take any pg € pg N D. a

Definition 2.3.5 For 0, € B.,(VAR;,) and p € P, 8 =, ¢ if 0P = ¢PS for each generic filter
PG 2 p-

For 6 € B.,(VAR;,) and p € P we say that p forces 6 = 1 (¥ = 0) if for all generic pg > p,
§pc =1 (6% = 0). This is written p |- 8F =1 (p |F 6 = 0). &

The next lemma shows how each appearance of = can be eliminated.

Lemma 2.3.6 Suppose that i € A,ACI,|A|=p.
Suppose that w1 := —py and 73 := VB pg, where B runs through all B C I with | B|=p,A# B
and g € B. Thenm; =, m forall peP.

Proof: Let pg > p be a generic partition. According to definition 2.1.4 and lemma 2.3.1, (mq1)Pe =
1 (pa)fe =1 =08 A¢peceIB+£Aige BABE pg & (Vpza pp)’e =14
(71'2)’66 = 1. O

Lemma 2.3.7 For any Boolean circuit @ € B4(VAR;,), there ezists a negation-free circuit f €

By4(VARy,) such that § =, 8 for any p € P. Furthermore, s(8) < s(8) - (gj)

Proof: First notice that =V, 7, =¢ A; -m;, and that - A;7; =g V; -71;. So without loss of generality
we can assume that negations appear only in front of the input variables. For each input variable p4
pick ig € A and replace e~ach appearance of -p4 with Vp. io€BAB#A PB- According to lemma 2.3.6
6 =¢ 6. This new circuit 6, still has depth d. Furthermore, s(0) < s(0)-max;,(s(VB: i,eB,B£4A PB)) =
s(0) - (271). 0
Lemma 2.3.8 For each bounded ¥ € Lm(P), p |- ¢ iff p |- (e4)F = 1.

Proof: Induction on the number of logical constants in . a

Definition 2.3.9 Two conditions o and g are incompatible (oo L ) if
JA€adBeBA+BANANB#0.

Two conditions « and § are compatible (a || B) if
VAcaVBe B A+B—ANB=0. &



Definition 2.3.10 B C P is orthogonal if Vo, € B o # f — a L (B and is complete if Vp €
PlaeBpl| e

A Basis is a collection B C P which satisfies both these conditions (i.e. is both Orthogonal and
Complete). &

Definition 2.3.11 || B ||:= maxgeg(] Set(5) |). &

Lemma 2.3.12 Suppose that || B ||*< n for all k € w (or in short-hand notation || B ||< n%)
ThenV p e P,V BE€Bp||B—pUPB E Pryr.

Proof: Assume that p € P;. Thus (n— | Set(p) |)* > n. Also assume that 8 € B, where

| B [< nw. Clearly | Set(B) |?*< n. If p || B we notice that

(n— | Set(pUB) ¥+ > (n— | Set(p) | — | Set(B) [)**" > (nk — nar)F+1

> (n¥)FH(1 - (% )ar e+l > n(nk(%)k"'l) > n. The last inequality follows because n > 2(k+1k for

any k € w. Thus pU S € Pry1. O
The next lemma shows an important technical point in Ajtai’s choice of P. In effect the lemma

allows us to repeat estimates in a scaled down version. More specifically it allows us to assume

that ( |- ¢ in cases where pg | 9 for some pg € P. This is because the lemma allows us to replace

I:={1,2,..,n} by I' :={1,2,....,n'} where n’ := n— | Set(po) | and then smoothly pass from P(I)

to P(I').

Lemma 2.3.13 (Scaling down) Fiz p € P, let J := I\ Set(p) and let n' :=| J |. Define
Pe(J) :={p: p is a partial p-partition of J and (n'— | Set(p) |)* > n'}. Let P(J) := Ukew Pi(J).
Then P(J) = P?, where PP :={p: p is a partial p-partition of J and pUp € P}.

Proof: First we show P? C P(J). Suppose that g € P?. There exists kg € w such that n’ < n <
(n— | Se(5U p) )" = (n— | Set(p) | — | Set(p) |)*
= ('~ | Set(3) )% S0 p € Pay(J) C P(J).

Second, we show that P(J) C P*?. Suppose that g € P(J). There exists k¥ € w such that
n' < (n'— | Set(p) |)®. As p € P there exist [ € w such that (n— | Set(p) |)! > n. By combining
this we get that (n— | Set(5U p) |)*! = (n— | Set(p) | — | Set(5) |)*
= (n'— | set(p) )*¥ > (n/)! = (n— | Set(p) |)* > n. Thus pUp € P and j € P*. O

Lemma 2.3.14 Suppose that B is a basis for P and H C B. Suppose also that || B ||< nw. Then
(a) plF (Vaen R)F =1 iff p is incompatible with all conditions h' € B\ 'H.
(b)  plF (= Vien R)F =1 iff p is incompatible with all conditions h' € H.

Proof: (a) =: Suppose that p |- (Vaex R)F = 1, but p is compatible with 2’ € B\ H. By use of
lemma 2.3.12 p’ := pUR' € P. By using property (a) of a basis (definition 2.3.10) A’ is incompatible
with all conditions in H. Clearly p’ O h’ so p’ is also incompatible with all conditions in H. But
then (Vhex h)Pe = 0 for each generic filter pg > p’ (which exists by lemma 2.3.2). This contradicts
p - (Vaer B)F =

(a) <: Assume that p is incompatible with all A’ € B\ H. Let pg 5 p be any generic filter
(which exists by lemma 2.3.2). Let
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D :={p' € P: (p'is compatible with some h' € H) or (p’ is incompatible with p)}. By definition
2.3.10, D C P is dense. Also D is quasi-definable. By definition 2.2.5 (iii) there exists a € D N pg,
so there exists h € H with h C a C pg.

(b) = / (b) < are proved as (a) = / (a) <. o

Lemma 2.3.15 Let €1,€3,....,6, u € M, be an M-definable sequence of Boolean circuits, (iach of
the form €; := Vpey, h. Let By, ..., By be an M-definable sequence and suppose that t < nv such
that:

(a) for each j =1,2,..u B; CP, is a basis for P,
(b) foreach 7 =1,2,.,u || B;||<t,
(c) for each j =1,2,...,u, H; C B;.
Then for every generic filter pg either
(a) forall 7 €{1,2,..,u}, efG =0, or
there erists 30 < u such that €.° =1 and €:° = 0 for each 7 < j9.
b h ists jo < h th ;’OG 1 and ;’G 0 hj<jg
Proof: Let

D:={peP: (FjoI € Hj, Bl pAYY € UjcjoHj p L) or (Vy € Uj<uHj p L 7))}

Clearly D is quasi-definable. For each pg € P, if pg is compatible with some 8 € U;H;, then there
must be a smallest jo such that pg is compatible with some 8 € H;,. Here we uses that the least
number principle is valid in M. Now p := AU pg € P (by lemma 2.3.12), and thus p € D. So D is
dense. By definition 2.2.5 (iii) there exists p € pe N D. This condition p is incompatible with all
h € H;, j <jo.- As pc 2 p 2 h € Hj, clearly (Vhen,, h)Pe = 1. O

2.4 The key lemma

Recall that M is a countable non-standard model of Th(N) over a countable first order language
L. As above we have fixed p € w \ {1}, and I := {1,2,...,n} C M, n € M\ w. As above the set P

of forcing conditions consists of partial p-partitions p of I with | Set(p) |[<n — nw for some k € w.

Lemma 2.4.1 (key lemma) Let 6,6,,...,0, be an M-definable sequence of depth < d € w cir-
cuits with ¥¥_; s(0;) < n' for some t < ne (i.e. t* < n for all k € w).
Let pg € P. There exists p O pg, p € P and an M-definable sequence €1, €a, ..., €, of circuits
together with an M-definable sequence By, Bs, .., B, such that
(a) forj=1,2,..,u each B;, is a basis for P,
b) for 3 =1,2,...u each €; 1s of the form Vpey, h for some H; C B,
) for each j =1,2,...,u, 0; =, ¢; (see definition 2.3.5),
d) for some for some s <w for each j =1,2,..,u || B;||<s.

If we combine the key lemma with lemma 2.3.15 we get:

11



Corollary 2.4.2 If6,0,,....0, is an M-definable sequence of depth d € w circuits with ¥7_; s(0;) <
nt for some t < n%, then for any generic filter pg C P either

(a) forall 7 <u BfG =1, or

(b) there exists jo < u, such that 057 =1 and gfg =0 for all j < jo.

Before we prove the key lemma, we need to do some preparatory work.

2.5 Random conditions

My aim is to add a suitable probability distribution p on the space P of forcing conditions.

The next lemma in effect states that a randomly chosen condition p € Py which happens (and
this is un-typical) to be compatible to some small fixed and given condition k, by far is most likely
to ‘capture’ h (i.e. p D h).

Lemma 2.5.1 For k > 2p+ 1, k € N, and fiz m < n such that (n — m)**! > n > (n — m)*.
Let psym be the symmetrical probability distribution (perceived from inside M) on the set {p € P :|
Set(p) |= m}. For each h € P with | h |< n%, Pr(h C p) > n3 Pr(h || p A =(R C p)).

Proof: Notice that for fixed J C I with | J |= m the number n(m, p) of partial p-partitions p with
Set(p) = J is

m!
(p)7 (2)!

when m is divisible by p and 0 otherwise. The set {p € P :| Set(p) |
elements. If A’ € P, | Set(h') |= up and fix J C I\ Set(h') with | J |=

(%2=%) n(m — up, p) _(n—up- b)'( — m)l(p!)«()!
() m(m, p) nl(n—m— b)I(Z — u)!

n(m,p) =

= m} contains () - n(m,p)
b. Then

Pr(h' C pAJNSet(p)=0)=

1 1 1 . . .
Now suppose n — nk < m < n —n¥*1, and b,u < nw. There exists a suitable real (in the sense of

M) ¢ € [0,1] such that Pr(h C p A J N Set(p) = 0)

= ( )u(p D+5(1-532) Here we use the fact that a sufficiently strong part of real analysis can be
developed inside M so that we obtain a strict identity. Now

Pr(h || p A =(h C p)) = D25 Bk, vi=; Pr(h' C p A (Set(h) \ Set(h') N Set(p) = 0))

1 : 1
= S Sk b= (n)(“c‘l”*f"“(1 we) = wl (?)(g)(kic‘m“”““”i”

In general E}‘;& (?) @ = (a+1)*—a* Let a:=n'" = , and notice that Eu_é( Ya? < 2ua*~t. Thus

i (u) (l)(kic—l)ﬁpu(l—ﬁ) — Qu(l)pu(l—kic) . (l)(kic—l)(u—l)
T \J

n n n
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1 1 1
= 2 ()FTHOTED = Pr(h € p) - 2u()OTHD <Pr(R Cp) - ()7
when k£ > 2p + 1. In all estimates ¢ denotes an error term, which in all cases can be chosen as a
suitable real number in [0, 1]. a

Lemma 2.5.2 Fiz k € N. Also fixt < nw. Then there ezists a (global) probability distribution
Uglo on the M-definable set consisting of all partial p-partitions, such that for each h € P with
[hl<t

(i)  If C(p) is a monotone property (i.e. C(p)Ap C p' — C(p)), then

PH(C(p) | bl p)> 5 PH(Co)| hllpA~(hC p)),
(ii)  thereis s € M\ w such that Pr(p & Par, V(p € P\ Pr)) > 1 — exp(n—°).

Proof: Notice that in general Pr(C | By V By V ...V By) < max;Pr(C | B;), so if h:= U;er {4},
it suffices to construct a suitable pg, which besides (ii) has
Pr(C | Nier A; € p) > Pr(C | (Nieg Ai € p)A (/\jeF\G Set(p)NA; = 0)) for any G C F. Let A :=
Nier (A; € p), B := Neg (A; € p) A (/\ieF\G (A; N Set(p) = 0)), C = C(p), and for I =0,1,2, ...,
let D;:=| p |= 1. Let p; := Pr(Dy), and let g :=| G |. We choose pgl, symmetric on each each set
{p: D;}. We define pg, by choosing suitable numbers pg, p1,...p, with ¥;p; = 1. Notice that any
Uglo defined this way, forany I =[ h | —g,| A | —g+1,....,uhas Pr(C | AAD;) > Pr(C | BAD;_|p|4g)-
To see this notice that any monotone property C' can be written as a disjunction Vs (§ C p). We
have to show that Pr(C | A) > % - Pr(C | B) for a suitable choice of pg,p1,... For [ < lo let
D1 i= Q%pl. For lp < llet piyq := 2_%pl. Now minl(pﬁm'—t) = min(pﬁt) = %

Notice that Pr(D; | A) = Pr(D; || p |>| R |). For I >| h | a rough estimate shows that
-pp < Pr(D; | A) < 2-p;. A similar estimate shows that % -py < Pr(D; | B) < 2-p; when

<n—|h|+g. Now|h|—-g <tso

%
i
Pr(C | A) = %y [Pr(C | AA Dy) - Pr(D; | A)] > % [Pr(C | BA Di_jpiiq) - %Pr(Dz)]

1 1
> By [Pr(C[ B A Dijhirg) - 7 Pr(Diojhi4g)] 2 81 [P(C | BA Dijajyg) - g Pr(Dicjajyg | B)l-

8
Thus Pr(C | A) > 1-Pr(C | B) and (i) holds. Furthermore notice thatif (n—plg)* > n > (n—plg)"~?
then the probabilities are sufficiently concentrated around Iy to ensure that (ii) is satisfied. a

The factor % can be replaced by any standard rational ¢ < 1. Also notice that there are many other
choices of the distribution pg, ..., p,. One can for instance choose the binomial distribution with a
suitable mean ly. The point is that minl(%) . minl(ﬁ) is not too small, while at the same time
the probability distribution tails off sufficiently fast.

Notice that a phenomenon reminiscent of the complementary principle, is involved. If ug, is
focussed on some Py then (i) cannot hold. On the other hand if ug, is unfocussed and global (ii)
cannot hold. As an example of the first claim consider the property C(p) := 36 (| 6 |= lo— | h |
+1 A Set(6§) NSet(h) =B A6 C p). if p, =1 (and p; = 0 for 7 # lp) then Pr(C' | h C p) =0 while
Pr(C| h|| pA—(h Cp))=1. This is a violation of condition (i).

13



Corollary 2.5.3 For k > 2p+ 1, k € N and t < nw there etists a M-definable probability
distribution p on Pak, such that
(1) for each h € P with | h |<t, Pr(h C p)> ns -Pr(h || pA (R Cp)),

(2)  for each monotone property C(p)
PH(C(p)Vp & P | hllp)2 - Pr(C(p)Vp ¢ Paul hllpn=(hCp)).

Proof: Let u be the (normalised) probability distribution obtained by restricting pgo to Pai. By

(2) in lemma 2.5.2 p approximates pigl, very well (with a factor standardly close to 1). For (1)

combine this with lemma 2.5.1. For (2) combine it with lemma 2.5.2 with C(p) replaced by the

monotone property C(p)V p € Pay. O
We need the following elementary fact:

Lemma 2.5.4 For each number w, Pr(A| BAC) > w-Pr(A| B) if and only if Pr(C' | AAB) >
w-Pr(C| B).

Proof: Both sides holds iff Pr(A A B A C)Pr(B) > w-Pr(AA B)Pr(B A C). O

Corollary 2.5.5 If u is chosen on Paj such that condition (1) and (2) in corollary 2.5.3 hold, then

Pr(h? CpVp &P | W |l pA(pLh ) A i A (p L)) > = - Pr(R? Cp | B || p).

1
-8
Proof: Let A:=(h? Cp),B:=h || pandlet C = (pLA)A ... A(pLA 1)V p & Pax. The lemma
now follows by applying lemma 2.5.4 to condition (2) in corollary 2.5.3. O

2.6 Collapse of circuits

In order to prove the key lemma (lemma 2.4.1) we prove that:

Lemma 2.6.1 Suppose that 0 := —(Vpen h) where s(8) < n' for some t < no. Lets < nu.
Suppose that p is a probability distribution satisfying (1) and (2) in corollary 2.5.3 on Py, for some
k>2p+1, k € w. Then there exists an M-definable set C C Pay such that C C {p € Pay : IH C
P, || H ||< ps such that 6 =, Viers B with s(V, .z h) < n'} and such that

1 ks—2ps

w(e) > 1- ()7

n

Corollary 2.6.2 Let €1, €3, ..., €, be an M-definable sequence of depth < d circuits with £; s(¢;) <

nt for somet < nw. Let po € P. There exists p 2O po, p € P and an M-definable sequence €, ...., €
of depth < d — 1 (when d > 3) circuits, with 5; s(¢;) < n' such that s(€;) < s(e;) 7 = 0,1,2,.....
When d = 2 there ezists an M-definable sequence €, ¢€,, ..., €, of depth < 2 circuits of the form
6;- ‘= Vhen, h. Furthermore, each set H; C P contains conditions h which have all | Set(h) |< ps

. 1
for some s with s > w -t, and s < nw.
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Proof: (lemma 2.6.1 = corollary 2.6.2). By use of lemma 2.3.7 we can assume €q, €3, ..., €, are
all negation-free. There is an M-definable sequence €1, ...,€é, of depth < d — 1 circuits, where
all ‘input nodes’ are depth < 2 circuits. Let wy,72,..., 7, be the M-definable sequence of these.
Clearly r < n'. Without loss of generality, each 7; is either a ‘disjunction of conjunctions’ or is
a ‘conjunction of disjunctions’. Notice ¥, s(m;) < nf. According to the Scaling down phenomena
(lemma 2.3.13) lemma 2.6.1 also holds when the underlying set I is replaced by I’ := I \ Set(pg)).
So for some fixed £ > 2p + 1, for each 5 < r there exists an M-definable sequence Cq,...,C, C P

each with ) -
ks—2ps
IU’(CJ) >1- (n_ | Set(p) |)

such that for j = 1,2,..,,7and all p € C; 7; =, Vpemh if 7; is a disjunction of conjunctions, and
7; =, 7(Vher h) if 7; is a conjunction of disjunctions.

Now p(C:NCN...NCp) > 1—17- (%)ksz_fczps > 0 (when s > 2kt). So there exists p € C1N....NC,
with p O pg. Replace each depth < 2 ‘input circuit’ with a suitable depth < 2 circuit. a

Repeated use of this corollary (applied at most d times) reduces problem of proving the key
lemma to that of proving lemma 2.6.1.

2.7 The switching lemma

Definition 2.7.1 For 7 € I let
Ei(h):={h' : A D h ASet(h') D Set(h)U {i}A| A" |<|h|+1}. &

Definition 2.7.2 We say that Hy C P is an atomic tree-like refinement of Hy C P, (H1 —aTtr H2)
if 3h € HiFe € I Hy = (H1 U &(R))\ {R}.

We say that H is a tree-like refinement of H, (H —rr 7:() if there exists an M-definable sequence
(Ho, H1, ..., H,) such that Ho = H, H, = H and such that H; = aTr Hj+1 for each j < 7. &

Definition 2.7.3 B C P is a tree-like basis if {0} —1r B. &

Lemma 2.7.4 Suppose that B C P is M-definable and that || B ||< n' for some fizedt < L. If B
is a tree-like basis, then B is a basis for P.

Proof: First we show that Va,8 € B a # f — alfB. If B = ( there is nothing to prove.
Suppose that B := (B’ U &;(h)) \ {h} and that Yo,8 € B’ @ # f — alf. For a € B'\ {h} and
B € &(h) (which implies 8 D h) clearly a LS. For o, € &;(h) we must have o # § — a LS. Thus
Vo, eBa#p— alp.

Second we show Vp € P 33 € B p || 8. Suppose contrarily that pg € P is incompatible with all
B € B. Let (Bo, ..., B,) be an M-definable sequence with By := {0}, B, := B and where B; —4rr
Bjyq1 for j =0,1,...,7 — 1. M satisfies the least number principle so there must be a smallest jo
such that po is incompatible with all 8 € Bj,. There exists ' € B;,—1 compatible with pg. As
| set(B') |< n by lemma 2.3.12 p = poUB' € P. Let i € I such that B, = (Bjo—1U&, (8")\{B8"}.

Now p D po (like po) must be incompatible with all conditions in Bj,, B’ ¢ Bj, and thus
B’ = B"”. We get the required contradiction by noticing that p € P must be compatible with some
B € £q(8) C B, 0
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Definition 2.7.5 For H C P and for p € P let

HP = {h' € P(I\ Set(p)): A’ = h\ p for some h € H with h || p}. We say that B refines H if for
each 8 € B and each h € H if 8 || h, there is A’ € H such that A’ C 3.
For h, p € P we define the restriction h? € P(I\ Set(p)) as o\ p if h || p and let it be undefined if

hlp. &

Lemma 2.7.6 If B is a basis which refines H, and Hg := { € B: 3Fh € H B D h} then
Viern h =p Vpeny B-

Proof: First notice that for any generic pg there exists Bp € B such that jg O Bo. This is because
D:={pe€P:36 € B pDp}is both quasi-definable and dense. According to definition 2.7.5 B
refines H so 3h € H h || Bo if and only if 3~ € H Bo D h. Thus (Vaen h)P6 =1 JhEH gD h
& pc2PoNTheEH g2 h & e 2PoN(FheH pg 2hAR| fo) & pg 2BoAIhEH Bo 2 h
& pc 2 PoAPo € Hp & (Vaen, B¢ = o

Lemma 2.7.7 Let H C P be a M-definable collection of conditions with || H ||< n' for some fized
t < nw. Let po € Pr, k € w, and let u be a probability distribution on Py(I\ Set(po))
( for some l € w with | > 2p + 1) which satisfies the conditions in corollary 2.5.3.

If p € Pu(I\ Set(po)) is chosen randomly according to the probability distribution p, then for
each s < n%, with probability > 1 — (mytj” there exists a tree-like basis B which refines

H? such that || B ||< ps.

This lemma immediately implies lemma 2.6.1. To see this fix s < nw and let C := {p: IB a
tree-like basis which refines H and || B ||< ps}. Notice that C is M-definable. According to
lemma 2.7.6, the 0 in lemma 2.6.1, has § =, Vhen, h where Hp := {8 € B:3h € H 8 2 h}. Thus
to show the key lemma (lemma 2.4.1) it suffices to show lemma 2.7.7.

2.8 Some games involving forcing

As above assume M to be a countable non-standard model. Assume also that p € N \ {1} and
I:={1,2,...,n} C M, withn € M\ w be fixed. Let P, CP,C...CP, C..CP,7€w,be
the stratification of the set P of forcing conditions defined in definition 2.2.2. Our aim is to show
lemma 2.7.7.

The idea is similar to the one developed by J.Krajicek, P.Pudlak and A.Wood [15]. It also bear
a reminiscent of some ideas by T.Pitassi, P.Beame and R.Impagliazzo [19]. I define a two person
game with full information. I then show that any winning strategy for player I are very useful
in collapsing formulas (essentially the content of lemma 2.8.3). To show that player I actually
have a winning strategy I show (in the spirit of [15]) that any randomly picked strategy with high
probability guarantee player I a win (theorem 2.8.4). The probabilistic estimates are simplified by
considering a different (but similar) game (theorem 2.8.6, lemma 2.8.7 and lemma 2.8.8). Lemma
2.7.7 follows by combining lemma 2.8.3 with theorem 2.8.4.

Definition 2.8.1 Suppose that ¢ < s where s < nw (e.g. t,s are small) and let < h',h% ..., h? >€
M, v € M be a sequence of conditions with | Set(h?) |< ¢, j < v. Suppose also that {r!, A2, ..., h*}
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is complete for P (i.e. Vo € P 3j < v p || 7). The game G(n, k,t,s, < h*,h?,...,h” >) is played by
two players I and II as follows:

Round 0: Player I selects a condition p € Pg.

Round 1: Consider the first 7 < v where hy := A’ is compatible with p (which exists because the
collection {A!,.., A"} is assumed to be complete for P).

If p O hy player I wins and the output of the game is (.

If Set(hy) \ Set(p) # 0 let a; := min(Set(hq) \ Set(p)) € I. Player II selects an p-element set
A C I such that:
(1) {A} is compatible with p ({4} || p).
(2) either (2a) or (2b),

(2a) {A} is incompatible with Ay ({A} L hq),

(2b) {A} is compatible with Ay ({A} || h1).

(3) a1 € A.
In case of (2b) the game terminates. The output of the game is any §; > A where VB € §; BN
Set(h1) # 0 and Set(hq) C Set(é1).
In case of (2a) let §; := {A} and proceed to the next round.

Round j+1: Consider the next condition h;yq := h+1, i.,1 > i; compatible with pU§; (according
to lemma 2.3.12 such exists because p U §; € P when j < s, and {R, ..., A"} is complete for P).
If pU&; O hjtq player I wins and the output of the game is §;.
If Set(h;+1) \ Set(p) # 0 let a;+1 := min(Set(h;41) \ Set(p)) € I. Player II selects a p-element
set A C I such that:
(1) AnSet(p) = 0.
(2) either (2a) or (2b),
(2a) {A} is incompatible with A 41.
(2b) {A} is compatible with hj4q.
(3) ajy1 € A.
In case of (2b) the game terminates. The output of the game is any 6,41 5> A where VB €
6;41 BN Set(hjr1) # 0 and Set(hjt1) C Set(6;41).
In case of (2a) let §;41 := 6; U {A}, and proceed to the next round.

Round s+1: If this round is reached, player II wins and the game is terminated. )

Notice that player I does not influence the game after the choice of p. The strategies of player
I can thus be identified with the conditions in Py.

Definition 2.8.2 We call p € Py a winning strategy for player I, if player wins irrespectively of
what player II chooses. )

Lemma 2.8.3 Suppose that H = Ho U Hy is complete for P (i.e. suppose that

Vp € P 3h € H p || h). Suppose that Ho := {h',...,h*} and Hy := {h**!, .. A"}, uw < v e M.
Consider the game G(n, k,t,s, < k', h% ..., h¥ >), and suppose that p € Py is a winning strategy for
player I. Let B be the set of possible outputs (when player II varies his/her possible plays). Then
B is a tree-like basis in P(I\ Set(p)). Furthermore, B refines Hg and has || B ||< ps.
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Proof: We are given a winning strategy p for player I. We have to show that B is a tree-like basis.
We view each § constructed at a certain stage in an actually played game, as a (uniquely defined)
‘situation’. Let S(6) denote the situations which can be reached from §. We want to construct B
as a sequence

{0} —aTR Bi —ATR ... —aTR Bj —aTR Bjt1 — ... — B.

Suppose that B; has been constructed. Pick any situation §’ which has not been reached so far,
but which can be reached from a situation corresponding to a é € B; which has already been
considered. Let Bjiq := (B; U &,(6)) \ {6} where a := min(Set(h) \ Set(p)). Here h denotes the
next h* compatible with p in the situation corresponding to 6. As p was assumed to be a winning
strategy for player I, this procedure terminates, and all 8 € B get | Set(5) |< ps.

Finally we show that B refines Hf. We have to show that if h || 8 for some h € H{ and
B € B, then there exists A’ € Hj such that A’ C B. So suppose B is compatible with (h)P €
{(rRY)?, (h?)?, ..., (h*)?}. If the game terminated when considering this h? clearly 8 D (h?)? and we
are done. If the did terminate for another A’ the game which produced g, must have terminated
before A7 and so j' < j. This is only possible if (hjl)p C f3. As the sequence h', A%, ..., h* A*t1 .. AY
had all the elements from Hp listed in the beginning, (h7')? € H§. a
The next theorem shows that almost all (in the sense of u) strategies p are winning strategies for
player 1. More specifically:

Theorem 2.8.4 Consider the game G(n,k,t,s,< h',h?, .., h? >). Let Wi C Pai be the set of
winning strategies for player I (we only consider M-definable strategies). If p is a probability
distribution on Pai, which satisfies condition (1) and (2) in corollary 2.5.3, then

1. ks—2ps
V) 21— ()55

Notice that ¢ does not enter the estimate as long as ¢t < nw.
We show theorem 2.8.4 by comparing the game G(n, k,t,s, < !, h? .. hY >) with another game
G'(n, k,t,s).

Definition 2.8.5 The game G'(n,k,t,s) is played by two players I and II as follows (all sets etc.
are M-definable).

Player II selects J C I, with | J |< ps, and selects a sequence ', A2, .., A’ of conditions each
with Set(h*) C I'\ J, and | Set(h?) |< t.

Player I then selects a condition p € P;. Consider the first condition A := A/ compatible with
p (if there is no such player I wins). If o C p player I wins, otherwise player II wins. )

In this game player II makes the choices before player I. Clearly player I always has a winning reply
(just choose p D h'). We claim almost all player I's replies are winning:

Theorem 2.8.6 Let Wi(7) be the set (M-definable) of replies p which ensure a win for player I
after player II made a choice . Then if u is a probability distribution which satisfies condition (1)
and (2) in corollary 2.5.3,

S|
N~

pOVI(1)) 2 1= ()2,
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Proof: First notice
p(Wi(7)) > min; Pr(h? Cp| B [[pAp LA A.Ap LR
According to lemma 2.5.4 and condition (2) in corollary 2.5.3 for any j
Pr(h/ Cp| R [[pA(p LA AaA(p LHTY)) > Pr( Cp| A7 || p)

(let A= (R Cp), B=h ||pand C=p L h* A....Ap L h?~1). But by condition (1) in corollary
2.5.3 ,

3
Pr(h’ C p) S

Pr(h? Cp| B || p) = : : ;
r(h? Cp| B[] p) Pr(h? Cp)+Pr(hi || p A-(R Cp)) —

O

—~
S|~
~—
=

Lemma 2.8.7 Suppose that u satisfies condition (1) and (2) in corollary 2.5.3.
Let w = max,(u(Wi(1)). Then for each strategy v of player II in the first game

SIS

pOVI()) 2 1= (1 - w)* > 1 —(

)2.

S|

Proof: The task for player II to survive round 1 of the game G'(n,k,t,s) (if player I selects
the reply p randomly) is “easier” than the task of surviving any specific round j of the game
G(n,k,t,s,< h',h?,...,h" >). More formally the probability Pr(survives round & | history of the
game) is

> min; Pr(h? Cp| A ||pA(p LAY A ...A(p LR71)) > min; Pr(h? Cp| R || p).

a
Lemma 2.8.8
~ 1 s ps ]_ ks—2ps
pWr) 2 1= (Zo(u(WV1(v)))) 2 1 = ()2 -nk 21— () 2 >0
when k > 2p + 1.
Proof: The number of strategies for player II in the first game is < n'x. O

This completes the proof of theorem 2.8.4. Lemma 2.7.7 follows by combining lemma 2.8.3 and
theorem 2.8.4.

2.9 Some consequences

Suppose that M is a countable non-standard model of Th(N) in some countable first order language
L. Suppose L extends the language of Arithmetic. Let p > 2, p € w and let n € M \ w. Assume
that » not is divisible by p. Let Lp be the L extended by an unspecified p-ary relation symbol P
Let

M; :={m e M: t(n) > m for some term ¢ € L}.

So far we are able to prove:
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Theorem 2.9.1 (weak version) If all terms t € L have sub-ezponential growth rate, then for
each generic filter pg (M}, pc) |E ~Count(p). On the other hand (M}, pc) satisfies induction for
bounded Lp-formulas. As above pg := Ugep, .

In the next two sections I strengthen this result. I show that the the model (M}, f¢) satisfies the
Count(q) principle exactly when certain exceptional forests do not exists.

Proof: (Outline) The argument is very similar to the argument in [2] so we only outline the
argument.

It suffices to show that the least number principle is valid for bounded Lp-formulas with pa-
rameters in M?. Now translate each instance of the least number principle into a Boolean circuit
of the form LNP, (71,72, ..,my) 1= Ty V (Vi<u(77; A (Ak<j Tk))). According to the general col-
lapsing result from section 1, each 7; can be replaced (and this can be done simultaneously) by
disjunction of small positive conjunctions (or by negations of disjunctions of small positive con-
junctions). According to the key lemma (lemma 2.4.1) for any generic filter pg if (7,)?¢ = 0 there
exists jo < u with (7;,)?¢ = 0 and with (7;)?¢ = 1 for all j < jo. A simple argument shows that
LNP, (71, ...,m,)?¢ = 1. But then according to lemma 2.1.6 (M}, jg) must satisfies induction for
bounded Lp-formulas with parameters in M. O

3 Forests of decision trees

The specially labelled trees we are going to consider can also be viewed as decision trees. In our
case the decisions concern a (hypothetical) partitioning of a finite set I := {1,2,...,n} into disjoint
p element subsets. To avoid meaningless statements we always assume that n is larger than p times
the height of the trees. All trees are rooted and finite (in later parts of the argument “finite” in the
sense of a non-standard model of first order Arithmetic). When we follow a branch from the root
towards the leafs we make successive decisions building up (parts of) some mathematical object.
In this case (which we refer to as an (p, n)-labelling) the mathematical object is a partitioning of I
into disjoint p-element subsets. At each vertex v, except at the leafs, there is assigned a “question”
iy € I. At the vertex v we are asked to decide which p element subset A C I the element 2, belongs
to. All possible answers which concerning the partitioning at 7, have to be represented. Thus we
require that there is a one to one correspondence between possible answers (at 7,) and the sons
from 4,. The label a of a branch is identified with the final object (here a partial partitioning)
which has been constructed.

Suppose that we are given a forest 17,75, ..., Ty, of decision trees. If each object (label on branch)
appears 0 modulo ¢ times, does ¢ divide u? If there exists a global object (in this case when p
divides n) the answer is always positive (as illustrated by theorem 3.1.3).

This type of problem has not previously been considered in the literature. For almost any math-
ematical structure, it is possible to define such decision trees. They specify the local diagrams.
In section 6 our analysis naturally leads us to consider another type of decision trees. Now let us
focus on (p, n)-labelled trees as just defined. Notice first that each (p, n)-labelled tree is a graphical
representation of a tree-like basis. Because of this, the concepts from section 2 (like conditions and
restrictions ) will keep their obvious meaning.

Our aim is show that we have the following characterisation.
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Theorem: Let q,p > 2 and h € N. Suppose that h > q. Then the following statements always
hold simultaneously.
(a)  All prime factors in p divide q.
(b)  There exists ng such that for all n > ng which are not divisible by p there is a (p,n)-labelled
forest T1,Ts, ...., T, such that:

(i)  All trees have height < h.

(ii)  Fach type of branch appears 0 modulo q times.

(i) w # 0 modulo g.

Later we also discuss the general case where there are less restrictions on the (asymptotic) height
of the trees.

3.1 Some easy results

First let me illustrate the definition with a few trivial examples and observations.

A subdivision argument shows that Count(p) always holds in models in which

Count(rp) holds. According to my analysis (section 4) this a priori ensures the existence of a
forests T4, .., Ty of (p,n)-labelled trees where each branch appears 0 modulo ¢ times, but where
u # 0 modulo g.

Example 3.1.1 Suppose that ¢ = rp and that p does not divide n. Consider the forest F which
contains v copies of the (p,n)-labelled trees:

/1? 27 n?

An edge for each of the (::i) posible answers.

f/

[l
—~~

FEach branch of the form {{i1,%2,...,1p}} appears in each of the r copies of the trees 117,157, ...,1,7.
Thus each such branch appears in ezactly rp (=0 modulo q) trees. However the forest F contains
rn trees which # 0 modulo q (when n # 0 modulo p).

Example 3.1.2 Another trivial ezample arrises when q divides p and n # 0 modulo q. In this
case the forest F := F' contains n (p,n)-labelled trees (# 0 modulo q) trees. Each branch appears
ezactly p(= 0 modulo q) times. This ezample corresponds to the fact that Count,(uq) (where n # 0
modulo q) holds in the same models as Count(q).

The type of forests in these two examples are so simple that we do not consider them as exceptional.
Here are two easy cases where there are no exceptional forests.

Theorem 3.1.3 Suppose that p divides n. Suppose that Ty, T, ...,Ty is a (p,n)-labelled forest
where each branch appears 0 modulo q times. Then uw = 0 modulo q.
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Proof: According to the assumption p divides n so there exists a partitioning pglobal of {1,2,...,n}
into disjoint sets Ay, As,.., Az C {1,2,..,n} each containing p elements. The partition pgiobal
extends exactly one branch frcfm each tree. Clearly, pglobal allows us to define a partitioning of the
trees 11,7y, ..., Ty, into disjoint classes each containing exactly ¢ trees. a
Using a similar idea we notice

Theorem 3.1.4 Suppose that T1,Ts, ..., Ty, is a forest of (p,n)-labelled trees. Suppose that the sum
of the heights of all trees is smaller than %. If all branches appear 0 modulo q times, then u = 0
modulo q.

Proof: Select a branch §; := a; from the tree T;. The branch must be compatible with at least
one branch a; € T;. Let B3 := 1 U ap. This branch (=condition) must be compatible to at least
one branch az € T3. Eventually we construct a condition p which extends exactly one branch in
each tree. a
One can try to elaborate on this type of argument. A (very naive) strategy is to try to choose short
branches from each tree. It is not hard to see that this method breaks down when v > n.

In [23] T presented a graph theoretical argument. I developed this argument in cooperation
with P.Pudlak. It used a generalisation of a well-known theorem from graph theory. This theorem
states that if in a graph G all vertex have degree at least as large as % | Gyertex |, then G contains a
Hamiltonian circuit. This type of argument breaks down even when u is significantly smaller than
n?. This illustrates that the main difficulty is to understand the cases where u is large compared
to n. Early in this research it was clear that even the cases where u < n? have considerable depth.

It was also clear that results relevant for Bounded Arithmetic all would require techniques which
at least would be able to deal (when n tends to infinity) with the case where u > n* for arbitrarily

fixed k.

3.2 Breaking down trees

Let T be a (p,n)-labelled tree. Consider the following equation which holds modulo g.

T T T, T

L Y e R R

~/

1 — v modulo ¢

copies of Tj.

Notice that both sides of the equation contains 1 modulo ¢ tree. Also that each branch appears
the same number of times (modulo ¢) on each side of the equation.

Suppose that F := {T1, ..., T} is any forest. Repeated application of the identity allows us to break
down the trees in F. Eventually all trees can be brought on a normal form of the following type:
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Let us call such trees perfectly unbalanced (=PU). Clearly we have,

Lemma 3.2.1 Fiz q > 2, ¢ € N. Let F := {T1,...,T.} be any forest. There exists a forest
F'={T{,T3,....,T!} in which each (type of) branch counted modulo q appears the same number
of times as in F. Each tree in F' is a PU-tree and furthermore the number u’ of trees in F' equals
(modulo q) the number u of trees in the forest F.

Notice that the PU-trees have a very simple representation. Each PU-tree can in a canonical
fashion be represented by expressions of the form,

(u1,1, {u1,2, ey ul,p})(u2,17 {u2,2, ooy u2,p})---(uh—1,17 {uh—1,2, ceey uh—l,p})(uh)a

where u; ; € I.

Example 3.2.2 The PU-trees

77
Answer : {4,5,6})4§/ 12
o and -
)\V \ﬁé Answer : {4,5,6}
Answer : {1,2,3}

have the representation

(1,42,3})(4,{5,6})(7) e (4,{5,6})(1)

3.3 Bringing the forest on normal form
It turns out that there are various useful identities between collections of PU-trees.

Example 3.3.1 Consider the PU-trees T := (4, {5,6})(1,{2,3})(7) and

T := (1,{2,3})(4,{5,6})(7). Notice that T and T’ contain the same branches of length 3. The
branch B := {{1,2,3},{4,5,6}} does not appear in T and T'. FEzcept for the branch 3 the tree T
contains the same branches of length < 2 as the tree (4,{5,6})(1). Also, except for the branch [
the tree T' contains the same branches of length < 2 at the tree (1,{2,3})(4).
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This can be expressed by the equation,

EE

)W W Ans: {1,2,3} W \V
Ans : {4,5,6}
4?7 1?

47 e 1? _|_ 1 _

%N/ \t@fms . {4,5,6) /N/

Ans: {1,2,3 . Ans: {4,5,6}
{ 1? 47 Ans: {1,2,3} 12 47

or equivalent in our more compact notation by the equation,

(1,{2,3})(4,{5,6})(7) = (4,{5,6})(1,{2,3})(7) + (1,{2,3})(4) — (4,{5,6})(1).
The equation expresses the fact that both sides of the identity contain 1 tree (counted with signs).
And it expresses the fact that both sides contain ezactly the same set of branches.

Here is another identity.
Example 3.3.2 (2,{1,3})(4) = (1,{2,3})(4) — (1) + (2).
The identities from the examples can be expressed generally.
Lemma 3.3.3 We have the following identities.
(1) (w1, W1) (w2, W2)...(b, B)(a, 4)...(wn) =
(w1, W1)(we, W2)...(a, A)(b, B)...(wp) — (w1, W1) (w2, W2)...(a) + (w1, W1)(w2, W2)...(b).

(2) (w1, W1)(w2, W2)...(az,{a1, as, .., ap})...(wp) =
(wl,Wl)...(al, {CLQ, Az, ..y ap})...(wh) - (wl, Wl)...(ag) + (wl, Wl)...(a,l).

The equations gives high flexibility in ordering the elements below the top-level. Repeated use of
the equations gives the following lemma.

Lemma 3.3.4 Let F' := {T},..,T!,} be a forest where all trees are PU-trees. Then there erist a

forest F' := {T7,...T,} where all trees are of the form

(w11, {w1,2, 05y W1 p}t) (Wi, {002y ooy Uip} ). (Un)
where u1 1 < U1 < ... < Up—1,1, and where u; 1 < U2 < ... < U;p for1=1,2,..,h—1. Furthermore,
(i)  The forests F' and F" contain the same number of trees (modulo q).
(ii) Each (type of) branch appears the same number (modulo q) of times in the forests F' and F".

We will come back to this normal form later.
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4 The first main result

4.1 Reducing the count(p) versus Count(g) problem

Suppose that M is a countable non-standard model of Th(IN) over a countable first order language
L, which extends the language of Arithmetic. Suppose that p > 2 and I := {1,2,...,n} C M for
some n € M \ w. Assume that n is not divisible by p. As above, let M} := {m € M : #(n) > m,
for some term ¢ € L}. Let Ly (P) be L extended with a constant ¢, for each a € M, together
with an p-ary relation symbol P.

Theorem 4.1.1 (Main result) Suppose that all terms t € L have sub-ezponential growth rate.
Then for each generic filter pg (see definition 2.2.5),

(a) (M);,h6) = — Count(p).
(b) (M3}, pg) satisfies induction for bounded Ly (P)-formulas.
(c) (M3, pc) satisfies (all versions of) the pigeon-hole principle for bounded Ly (P)-formulas.

Furthermore, there erists a sequence si(z),k € w of (arithmetical) functions (which depend on
the ezact growth rate of the terms in L), such that (under the harmless extra assumption that the
underlying language L might need an extension) the following are equivalent:

(i) (M2, pc) satisfies the Count(q) principle.

(ii)  Each forest T1, Ty, .., T, of (p,n)-labelled trees in which all trees have height < si(n) for some
k € w and in which each branch appears 0 modulo q times, has uw = 0 modulo q.

(i) As (ii) but for (p,n)-labelled PU-trees.

Suppose that all terms in L have (at most) polynomial growth rate. Then si(z) := k gives the
required characterisation.

In general sy(z) can be chosen such that (si(n))! < n for all 1 € N.

Our overall question is when systems of Bounded Arithmetic extended by an axiom scheme for the
Count(g) principle, are able to prove Count(p). The first main result, links this to an understanding
of the structure of exceptional forests. Furthermore, it shows that the asymptotic height of the
trees in the minimal exceptional forests is directly linked to the strength of the underlying axiom
system.

We have already proved (a) and (b). The implication (iii) = (ii) follows immediately from
lemma 3.2.1. To show (i) = (iii) assume that there is a forest F which violates (iii). Assume
that the language contains a suitable relation symbol which allows us to define the forest and a
partitioning of each type of branches into disjoint g-element subsets by a Bounded formula (this is
the harmless extra assumption). I claim that the Count(q) principle fails in (M}, pg). To see this,
notice that there is a Bounded Lp-formula with parameters in M} which defines (by use of jg) a
partitioning of the trees in the forest 7. And this in such a way that each class contains exactly ¢
trees. But by assumption F contains trees T4, T5, ..., Ty, for some u with « # 0 modulo gq.

The implication (ii) = (i) is difficult . As it turns out our proof of (c) provides a first step in
showing this implication.
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Lemma 4.1.2 Suppose that for some a € M}, some bounded L (P)-formula 0(-,-) defines a
bijection from a to b. Let pg € pg be given. Then there exist M-definable sequences H; ; and B; ;,
(7,7) € a X b such that for some p 2 pg, p € P:

(1) forall (i,j) € a x b, B, ; is a tree-like basis for P(I\ Set(p)),

(i)  forall(v,j)€axb, ||B;;||<t for some fized t < nu = (n— | Set(p) |)%)
(i)  for all (i,5) €axb, H;; CB;;,

(iv)  for eachig < a: B := U<y Hiy,; is a basis for P(I\ Set(p)),

(

10

v)  foreach jo <b: le-o := Ui<q Hij, 18 a basis for P(I\ Set(p)).

Proof: Suppose that some Bounded Lys (P)-formula 6(-,-) defines a bijection from A : {1,2,..,a}
onto {1,2,..,b} for @ # b. According to lemma 2.1.5 there exists d € w and t € M and a M-
definable sequence of circuits 6; ; (4,7) € a x b, such that each (8, ;)°¢ = 1 exactly when (M, pg) =
6(%,7) (by lemma 2.1.6). That is exactly when (M, pc) |= 60(%,7) because 6 is bounded and thus
downward persistent. Now according to the key lemma (lemma 2.4.1) there exists p 2 po, p € P,
an M-definable sequence B; ; (7,7) € a x b where each B; ; is a tree-like basis, and an M-definable
sequence H;; C B;; (¢,7) € a x b such that for each (¢,7) € ax b: 6;; =, Vaen,, b

We claim that the sequences B;; and H; ; satisfy (i)-(v). By use of the fact that A is an injective
function it is straightforward to show that for each 2 < a the conditions in B;” must be pairwise
incompatible. The fact that & is a (mono-valued) function ensures that for each 5 < b the conditions
in le- are pairwise incompatible.

The only problem is to show that each B;” and each le- are complete for P(I'\ Set(p)) (see definition
2.5.3). We can simplify the notation by assuming that p = . This simplification is possible by the
scaling down lemma (lemma 2.3.13) which allows us to replace I by I\ Set(p).

Suppose that p’ € P is incompatible with all conditions in B;” for some fixed ¢ < a. Let pg be a
generic filter (without the simplification we assume pg 5 p). Now for each j < b, f is incompatible
with all conditions in H; ;, so by use of lemma 2.3.14 05? = 0 for all 5 < b. This is in contradiction
with lemma 2.3.4 which ensures that @ (or p in the un-simplified case) forces h to be total i.e. to
take a value 5 < b.

The completeness of the conditions in each le- follows by use of the assumption that ~ was
forced onto. O

4.2 Using a combinatorial phenomenon

At this stage our aim is to show that (i)-(v) in lemma 4.1.2 can be only satisfied when a = b. First
we show

Lemma 4.2.1 Suppose that for some a,b € M}, there exist M definable sequences B; ; and
H;; (¢,7) € a x b. Furthermore suppose they satisfy condition (i)-(iil) in lemma 4.1.2 as well as:

(iv)’ For each ig < a: B

o 1= Uj<p Hiy 5 1 a tree-like basis.

(v) For each 70 < b: le-o = Ui<a Hij, 15 a tree-like basis.
Then a = b.
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Proof: First, notice that we can assume that all conditions k,h’ € H; ; have

| A |=| A" |. Otherwise make suitable tree-like refinements. Second, notice that P (the set of forcing

conditions), has the property that the number N(n,p, c) of conditions in a tree-like basis where all

conditions h have | h |= ¢, only depends on n,p and c¢. Now ac = i<, | B |= Zi<aj<s | Hij |=

i<h |le |=be, so a = b. m|
Suppose that we could replace “is a basis for P” with “is a tree-like basis” in lemma 4.1.2. Then

according to lemma 4.2.1 this would ensure that the pigeon-hole principle could never be forced

false. So if a basis B for P in general would be tree-like, we would be done. Unfortunately, the
reality is more complex.

Example 4.2.2 (By J. Krajicek)
The converse of lemma 2.7.4 does not hold in general.

The collection B := {{{1, 2}}, {{la 3}}, {{27 3}}a {{1, 7:}7 {2,j}7 {3, k}}i,j,k24/\|{i,j,k}|=3} is a basis fO’l‘
P. However B is not a tree-like basis (there is no ig € I such that all § € B has ig € Set(f)).

Observation 4.2.3 Consider ezample 4.2.2. Let B' := (BU&1({{2,3}})\{{{2,3}}}, so B —1r B’
Notice that B' is a tree-like basis. To see this, notice that B’ can be obtained from {0} by the atomic
tree-like refinements based on:

& (D),
&:({1,4}),&({1,5}), ..., &2({1, n}),
€3({{1,4},{2,5}}), £s({{1,4},{2,6}), ..., &5({{1, 4}, {2, n}}),
&3({{1,5},{2,4}}), &5({{1,5},{2,6}}), ..., &5({{1,5},{2,n}}),

53({{1a n}a {2a 4}})a 53({{1a n}a {2a 5}})a Ty 83({{1a n}a {2a n-—= 1}})

This observation is part of a general phenomenon. It turns out (and this was one of the combina-
torial discoveries which made my general approach possible), that any basis B for P has a tree-like
refinement to a tree-like basis.

Lemma 4.2.4 Assume that B is a basis for P, and that w € I. Then there exists a tree-like
refinement B’ of B such that for all B’ € B u € Set(f’).

Proof: Let B’ := Ugep (€u(B) \ {B}). Notice that this is actually a tree-like refinement of 55, and
that B’ has the required properties. a

Definition 4.2.5 For U C I, we let Cy denote the tree-like basis
{a: VAecadueUwuec AASet(a) D U}. Wesay B is a tree-like basis on U C I if for each
o € Cy, there exists 8 € B with 8 D «a. &

Lemma 4.2.6 Suppose that B is a basis for P, and U C I with | U |< nw. There is a tree-like
refinement B’ of B, such that B’ is a tree-like basis on U.

27



Proof: Let U = {u1,u2,...,u,}. According to lemma 4.2.4 there exists a sequence
B = By —»tR B1 —7TR ... >TR B,, such that for all § € B; u; € Set(3). Let B’ := B,. We have
to show that for each a € Cyy there exists 8 € B’, 8 O a. Now by use of a calculation similar to

the one in the proof of lemma 2.3.12, B’ is a basis for P, so each a € Cy is compatible with some
B € B’. Now as Set(8) D U actually § D o O

Lemma 4.2.7 Suppose that || B ||< t for some t < nw. Also suppose that the conditions in B are
pairwise incompatible. Then B is a basts for P if and only if each condition p € Py is compatible
with some B € B.

Proof: Repeated application of lemma 4.2.6. O

Lemma 4.2.8 If B is a basis for P, and || B ||< t for some t < n%, then there ezists a tree-like
basis B such that || B ||< pt(t + 1) and such that B —1r B.

Proof: First we construct B’. Pick a set V' C I such that V := Set(3) for some 8 € B. According
to lemma 4.2.6 there exists a tree-like refinement B; of B such that 5 is tree-like on V. Now fix
v € Cy and consider B] C P(I'\ V). It is not hard to show 5] is a basis for P(I\ V). Now by use
of lemma 4.2.7 we notice that we can prove the lemma by use of induction after ¢ inside M. This is
because we according to lemma 4.2.7 can replace P (which not is M-definable) by the M-definable
set P.

Let Bi(y):={B8: B'ny =0, B’ € B]}. Notice that Bi(7) is a tree-like refinement of 7. Finally
let B := U, Bi(y). By induction after ¢ we have || B ||<| Set(y) | +p(t — 1)t. Now | Set(y) |< pt,
from which the required inequality follows. a
In our applications lemma 4.2.8 can strictly speaking be avoided. Instead we can ‘hit’ B by a
randomly chosen condition p. Now a priori the claim must hold with probability exponentially
close to 1. More specifically the proof of lemma 2.8.3 shows that for a randomly chosen p with
high probability there exists a tree-like basis B (in P(I \ Set(p))) which is a tree-like refinement of
Bf. Lemma 4.2.8 shows more than this. It shows that there exist such extensions for an arbitrary
basis B with absolute certainty (and not just in the probabilistic sense when B is hit by a random
restriction).

We actually use a two-dimensional version of lemma 4.2.8.

Lemma 4.2.9 Suppose that there exists an M-definable “generic system”. That is a sequence
Hi i, (¢,7) € a x b such that:

(1) For each i < a By := Uj<p H; ; is a basis for P.

(ii) For each 7 < b le- = Ui<a Hi,; is a basis for P.
1

(iii) maz; jyeaxs || Hij ||<t for some t < niw.

Then there exists an M-definable “tree-like generic system”. That is a sequence H;; (i,7) € a x b
such that:

(i)’ For each i < a B := Uj<; H; ; is a tree-like basis.
(ii)’ For each 7 < b le = Ui<a ﬂi,j 1s a tree-like basis.
(i)’ maz(; yeaxs || Mg |1< %+ 1%
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Proof: Fix 1 < a. According to lemma 4.2.8 there exists a tree-like refinement B~ of B;”, which
is a tree-like basis. For each 7 < b this procedure induces a tree-like refinement Hé’j of H; ;. This
way we get an M-definable sequence M. ., (4,7) € a x b, so (i)’, (i) and || H; ; ||< pt(t + 1).

Now fix 7 < b. Again according to lemma 4.2.8 there exists a tree-like refinement le of B;-l,
which is a tree-like basis. For each ¢« < a this procedure induces a tree-like refinement H; ; of Hé’j.

Now notice that 5;> remains tree-like basis, and thus the M-definable sequence 7:(2-,3-, (i,7)€axb
satisfies (i)’, (ii)’. Clearly also (iii)’ holds because || H; ; ||< p(pt(t + 1)+ 1)(pt(t + 1)) < p*(t + 1)*%.
O

This immediately shows (c) in theorem 4.1.1, in the case of the bijective pigeon-hole principle.
The other versions of the pigeon-hole principle are treated with minor changes.

4.3 The hard implication

The implication (ii) = (i) in theorem 4.1.1 follows by the same type of argument.

Lemma 4.3.1 Suppose that 0(z1,z2,...,2,) is a bounded L(P)-formula with q free variables, and
all its parameters in (M}, pg). Suppose that 0 defines a partition of I, := {1,2,..,a}, a € M, into
disjoint g-element subsets (a # 0 modulo q). Then there exists an M-definable map A — H 4, which
to each q-subset A of 1, assigns a collection of conditions Ha C P such that for some t < n%,
maza(|| Ha [|) < t. Furthermore, for each v € I,, By := Uycy, |A|=qwea Ha i a basis for P.

Proof: Suppose that some bounded L(P)-formula 6(z1,zs..,2,) defines a partition of {1,2,...,a}
into disjoint g-subsets, zlmd g does not divide a. According to definition 2.1.5 and lemma 2.1.6
there exists d € w,t < n« and an M-definable sequence of circuits Qvl,...,vq, V1, ..., Vg € I, such that
ch...,iq = 1 exactly when (M7, pg) |= 0(1, ...,%,). Now according to the key lemma (lemma 2.4.1)
there exists p O po (for any given pg), and an M-definable sequence By, .o, v1,..,7, € I, where
each By, .., C P is a (tree-like) basis with || By, ..., ||< t. Furthermore, there exists a M-definable
sequence Ho, uy,...vy C Buy, .0, such that for each vy,...,v, € Lo, 0y 0,0, =5 VheHoy g, 0q h. Fix
v € I, and consider B, := Ugcr,vea Ha. For a,8 € By, a # 8 we claim alB. To see this notice
that otherwise there would exist p 2 U 3, and p € P would force both 8,, . ,, and 011{,~~,v{, true.
Now v € {v1,...,v,} N {v],...,v;} so this is only possible when {v1,...,v,} = {v1,...,9,}. Thus both
a and (3 belong to Hy,, v, € Buy,. v, As By, 0, 15 (tree-like) basis it is orthogonal and a LS.
It remains to show that B,, v € I, is complete for P({1,2,..,n} \ Set(po)). Assume for the
simplicity of the notation that pg = 0. According to the scaling down lemma (lemma 2.3.13) this
assumption is harmless. We have to show that no p € P is incompatible with all the conditions
h € B,. Now using lemma 2.3.14 each generic filter pg contains some h € B, . ,, for each
V1,2, ..,Vq € I,. But this contradicts the assumption that pg (in our case @) forces 8 to define a
total partition of I, into disjoint ¢ subsets. |
We want to that Count(g) is never forced false when p contains a prime factor which does not
appear in ¢. To show this it suffices to show that if H4 is an M-definable assignment as in lemma
4.3.1, then ¢ must divide a. The following example shows that this trivially holds when a << n.

Example 4.3.2 Suppose that a << n. Consider I, := {1,2,...,a}. Pick p1 C ps C .... C p, such
that for each v < a there is a, € B, such that a, C p,. This is possible whenever p, € P, v =
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1,2,...,a (which is the case when a << m). Notice that p, induces an M-definable partition of I,
into disjoint q-subsets. As M shares its first order properties with N this is only possible when ¢
divides a.

A major step in solving the Count(p) versus Count(g) problem is to show that the conclusion in
lemma 4.3.1 can be strengthened by replacing ‘each B, is a basis for P’, with ‘each B, to be a
tree-like basis’.

Lemma 4.3.3 Lett < n%,a € M. Let P be the set of forcing conditions (definition 2.2.2). Suppose
that A — Hy s an M-definable map which assigns a collection of conditions Ha C P, to each
g-subset A of I, = {1,2,..,a} such that

(i) maxa(|| Hall) <t

(i) By :=Uacr, |A|=qwvea Ha is abasis for P (v=1,2,...,a).

Then there ezists a M-definable map A — H, which assigns a tree-like refinement H, of Ha, to
each q-subset A of I, := {1,2,..,a} such that

(1)”  maxy(|| Ha l]) < gpt(t + 1).
(i) B, := UACT,,|A|=qved Ha is a tree — like basis (v = 1,2,...,a).

As a first attempt of a proof consider the following argument. According to lemma 4.2.8 there exists
a tree-like basis Bgl) which is a tree-like refinement of B1 := Uica Ha. This refinement induces
tree-like refinements H4 —TR HS) foreach AC I,,| A|=¢q (when 1 ¢ A, HS) = Hy). For each
v € I, let BS,I) = Upea qul).

Again by lemma 4.2.8 there exists a tree-like basis Bgz) which is a tree-like refinement of Bgl).
This refinement induce a tree-like refinement HS) —TR Hf) for each A C I,,| A |= ¢ (when
24 A, Hf) = Hgll)). For each v € I, let 81(,2) = Upea Hf).

Eventually (again using lemma 4.2.8) there exists a tree-like basis Bga) which is a tree-like
refinement of B((La_l). This refinement induces a tree-like refinement Hff_l) —TR HE:) for each
ACI,,|A|=¢q(whena¢ A, 'HEZ) = HE:_l)). For each v € I, let B .= Ugea HE:).

Let Hy := HEZ). We claim that each B, := Uvea H(a)A is a tree-like basis. To see this notice

lgv = Bﬁ“). By construction each 81(,1]) is a tree-like basis. Now
Bg”) —TR Bg”"'l) —TR ... —@TR Bg“)

SO Bq(,a) is a tree-like basis.
This argument has to be adjusted. We have to ensure that all conditions h are small throughout
the construction. To this end we need some more lemmas.

Definition 4.3.4 For H,H' C Plet H x H' :={hUAR' : he H,h € H'}. &

Lemma 4.3.5 Let A — Hy and A — H'; be two M-definable maps. Suppose that

(i) for each condition in H 4 is compatible with some condition in H'y and vice versa.
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(ii) for A, B with A # B and AN B # 0, all conditions in Ha are incompatible with all conditions
in H'g and vice versa.

Suppose that both the maps A — Ha and A — H'; satisfy conditions (i) and (ii) in lemma 4.3.3.
Then the M-definable map A — Ha X H'y ensures that (i) and (i) remain valid with t replaced by
2t.

Proof: Direct verification. a

Lemma 4.3.6 Suppose that By s a basis for P. If both By and B, are tree-like refinements of By,
then By X By is a tree-like refinement of both By and B,.

Proof: Proved by induction on the number of atomic tree-like refinements needed to get from By
to B; added to the number of atomic tree-like refinements needed to get from By to Bs.
It suffices to show that 7 and j are tree-like refinements in the following diagram:

B,
TR \1
Bo B x B,
e,
B;

As the first step in the induction argument notice that ¢ and j are tree-like refinements in the

diagram:
B,
7
ATR \
BO B1 X B2
ATR /
J
B;

Now each next step in the induction argument is shown by noticing (by use of the induction
assumption) that ¢ and j are tree-like refinements, and by noticing (again by use of the induction
assumption) that k and [ are tree-like refinements:

B, TR B %
TR x &
{ B/XBng/X(B]_X.Bg)
BO B]_ X Bg ;
TR .
J
B, As the notion of being a tree-like refine-
ment is transitive we are done. m|

31



The following proof simplifies an argument in an earlier and preliminary version of this paper.
Proof of lemma 4.3.3: Let A — H,4 be an M-definable map which satisfies (i) and (ii). For
each v € I, consider B, := Ugs, Ha. According to lemma 4.2.8 there exists a tree-like refinement
By, =4y By(v) for some tree-like basis B,(v) with || B,(i(v)) [|< pt(t + 1). This induce tree-like
refinements H 4 — () Ha(i(v)) where B,(i(v)) = Uas, Ha(i(v)).

I claim that the M-definable map A — H := Ha(i(a1)) x Ha(i(az)) % ... x Ha(i(a,)) satisfies (i)’
and (i)’ (4 = {a1,...,a,}). The first claim follows because || Ha4 ||< ¢ max, || HY ||< gpt(t + 1).
To show the second claim we need to show that B, := Udsy H 4 is a tree-like basis. To see this notice
that for each A C I, where A = {v,as,as,..,a,} we have B, —1r B,(i(az)) x ... x By(i(ay)) (by
lemma 4.3.6). This refinement induces a tree-like refinement Ha —1r Ha(i(a2)) x ... x Ha(i(ay)).
This tree-like refinement extend to a tree-like refinement B, = Uas, Ha — Uase (Ha(i(az)) x
Ha(i(az))... Ha(i(ay)) (where A := {v, ay,as,...,a,}). Thus 43 in the following diagram is a tree-
like refinement.

{0}

TR

B-U = UABU H’jl

1 'i3
By, = Uasy Ha Usy<as<...<agel\{v} (HY x HZE x ...H;q)
_&
13 14

UG2<G3<...<aq€Ia\{U} (Hi’f X qu)

where A := {v,ay,a3,...,a,}

By assumption (i) B, is a basis. We used lemma 4.2.8 to construct the tree-like refinement 4; := i(v).

And this could be done such that {0} —1r By. Now By(i(v)) X Usycase...<agera\fv} (Ha(i(az)) X

Ha(i(0y)) ~

= Ugy<as<<ag (Ha(i(v)) x Ha(i(az)) x ... Ha(i(a,))) = By, so by lemma 4.3.6 both 73 and 74 are

tree-like refinements. So {0} —1r B, —TR B, and thus B, is a tree-like basis. a
Combining lemma 4.3.1 and lemma 4.3.3 it is not hard to show (ii) = (i) in theorem 4.1.1.
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5 The positive part

5.1 Count(2) imply Count(4)

Assume that the Ag-Count(2) principle is valid in M. What is the status of the Agp-Count(4)
principle? Is it possible that there exists n’ € M such that the ordered set {1,2,...,4n'+7} C M of
“numbers” can be divided (in a Ag-definable way) into disjoint 4-element subsets, and r € {1,2,3}?

Consider the following informal argument: We want to show (reasoning inside M) that a set of
numbers of the form {1,2,...,n} can be divided into a collection of disjoint 4 element subsets only
when 7 is divisible by 4. Suppose that on the contrary some interval {1,2,..,4n'+r}, r € {1,2,3}
can be divided into a collection P of disjoint 4 element subsets. The case where r = 1 or 7 = 3 can
be excluded for trivial reasons. To see this sub-divide each 4-element subset into two 2-element
subsets. This induces a partitioning of {1,2,...,4n’ 4+ 7} into disjoint 2-element subsets violating
the Count(2) principle.

The case where r = 2 require a more involved argument. Consider all pairs of {1,2, ...,4n'+2}. Tt
only requires a quite weak part of arithmetic to prove that these pairs are in 1-1 correspondence with
{1,2, ..., (4n’2+2)}. And even less Arithmetical assumptions to show that (4n;+2) is an odd number.
To get a contradiction (by violating the Count(2) principle) it suffices to show that the partitioning
P induces a partitioning R of all pairs of {1,2,...,4n’ + 2} into disjoint 2 element sets. Consider
the pair {v1,v2}. If both v; and v, belongs to the same 4-element subset {vy, vy, v3,v4} € P let
{{v1,v2},{vs3,va}} € R. Otherwise suppose v; € {wy,ws, w3, ws} € P and vy € {1, Wy, W3, Wa} €
P. All elements are listed after size. So there are unique 7,j < 4 such that v; = w; and vy = w;. If
i # 7 let {{v1,v2}, {W;,w;}} € R. If i = 7 let {{v1,v2},{wis, @}} € R where 1’ =2, 2/ =1, 3 =4
and 4’ = 3. This completes the argument.

To summarise: We considered a structure S; constructed from I := {1,2,...,n}. In this concrete
case the structure consisted of all pairs of {1,2,..,4n'+2}. This structure S; had the property that
partial partitions of {1,2,...,4n' 4+ 2} into 4 element subsets induced (in a flexible way) pairings of
the elements in S7. And crucially the structure S; contained an odd number of elements. One could
try to modify the type of argument to the case where for example ¢ = 2 and p = 3. At an early
stage in this research J.Krajicek showed me some ingenious constructions attempting show that
Count(3) was a consequence of Count(2). However as J.Krajicek pointed out careful calculations
always seems to give the wrong parities. Irrespectively of the ingenuity however clever the structures
S was constructed, it always seemed to end up containing an even number of elements. So it seemed
that strong and unknown forces wanted Count(2) and Count(3) to be independent.

In retrospect this is of course a simple consequence of the negative part of the classification
which is developed in the next section. The first Main result (Theorem 4.1.1) shows that only
forests of specially labelled trees are relevant as structures 5.

5.2 Count(q-s) imply Count(q? - s)

In this subsection we show how a reminiscence of the ‘Count(2) implies Count(4)’ argument above
can be used to construct exceptional forests for various general ¢, p and n. More specifically we will
show:

Lemma 5.2.1 Suppose that ¢ > 2,s,v and n are given numbers with n # 0 modulo ¢°-s, n > ¢***11.
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Then there ezists a(n ezceptional) forest Ty, Ts, ..., Ty of (¢! - s,n)-labelled trees, where each
branch appears 0 modulo ¢* - s times, and where w # 0 modulo ¢" - s.

By use of the first Main result (Theorem 4.1.1) the existence of these forests gives us the main
ingredient in the positive part of the classification.

Corollary 5.2.2 Suppose that ¢ > 2,s,v are given numbers.
Then the Ag-Count(g**! - s) aziom scheme follows from the Ag-Count(q" - s) aziom scheme.

Definition 5.2.3 By [i4,...,1%)], we denote the (p, n)-labelled trees which contain all the branches
a of the form a = {44,...,A,} where 4; C I, | A; |=p, 7 =1,2,..,7 and where 4; N A = 0 for
j # k. Besides that we require that,

(a) A; N {ig,i2,..,4) #0forj=1,2,..,7r,

(b) Vk<I13j<ri €A &.
Definition 5.2.4 Let p,¢ > 2. The forest 7, consists of all the trees [i1,%,...,4,], Where
11 < iy < ... < 1, < m. &

Definition 5.2.5 By A, ;, we denote the number of ways it is possible to select » elements from
the sets {1,2,...,p},{p+ L,p+ 2,...,2p},...,{pl —p+ 1,pl — p+ 2,...,pl}, such that at least one
element is chosen from each of the p elements sets. )

Lemma 5.2.6 The forest 7, ,
| a|=1 appears in A, , trees.

of (p,n)-labelled trees, contains (7) trees. Each branch o with

Proof: Clearly | 7, |= (7). Suppose that

o= {1, 43,  ip}, {51, . a2, it i, ,zi,}} where 7} < i? < .... < 4} and where ©{ <4 < ... <
@), for j = 1,2,...,l. Now there is a one to one correspondence between the r element subsets of
Set(a), which contains at least one element from each member in «, and the trees in ., which
contain a. O

Proof of lemma 5.2.1: Let ¢ > 2, s,v and n > ¢?*t! be given. Let F be the forest which

contains which contains ¢ copies of the forest 7., where p := ¢t - s, r := ¢*. The critical

cases (the only non-trivial cases) are when n = ¢**!n' + u-¢¥, w =1,2,...,¢ — 1. The forest F
v+1,17 v 41,7 YU __ 4

contains ¢¥~? (;f,) trees. Now (;Z) _ (@"n'tug )---(Z;!r n'4ug? —g” +1)

q(q;%ll) times in both nominator and denominator. Thus (;f,) = k modulo s-¢” and thus F contains

v—1

. The factor ¢ appears exactly

k- ¢""! modulo s - ¢¥ trees for some k which not is divisible by g.

Each branch of length 1 appears exactly ¢" 7" - Ajvt1,1 0 = ¢*71 - (qv;l.s) = 0 modulo s - ¢”
times. In general (f) = 0 modulo s-¢” (when i < ¢%) so longer branches appears ¢*~* cAguiig g0 =
T i1 iz EIE) - (Z) = 0 modulo s - ¢”. O

This gives the positive part of the classification:

Corollary 5.2.7 If p,q > and all prime factors in p appears in q then the Ag-Count(p) aziom
scheme follows from the Ag-Count(q) aziom scheme.

Proof: Assume that ¢ := p; -p2-...-pr-s and assume that p := pzf -pzf e pzk According to
corollary 5.2.2 the claim holds when ¢ := ¢”-s and p := ¢"t! - s. Repeated application of this show
that the Ao-Count(pi1 -péz -...-p}¥) axiom scheme follows from the Ag-Count(p;-p2-...-pr) axiom
scheme. This scheme in turn follows from the Ag-Count(p; - p2 - ... pr - s) axiom scheme. m|
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5.3 Some examples

Before we turn our attention on the negative part of the classification it is instructive to examine the
structure of the exceptional forests when these are on the PU-form. Each (irreducible) exceptional
forest F of PU-trees I have found can be derived from the forests given in definition 5.2.4.

Example 5.3.1 Let ¢ = 2, p = 4 and n = 4n' + 2, n' > 2. Consider the forest F3 4, of
(4,n)-labelled PU-trees which contains:
AllPU-trees of the form (i1, W1)(i2) where i1 < iz < n and where W1 C {1,2,...,n} has 3 elements.
The PU-trees (1),(3),(5), ....., (4n' + 1).

Each branch of length 2 appears 16 times. A branch {j1,J2, 3,74} of length 1, appears in
mod(j1,2) + mod(j2,2) + mod(js,2) + mod(ja,2) trees of height 1. And the branch appears in
(nf) —4n + 6 + j1 + 72 + j3 + Ja trees of height 2.

The forests F3 4, contain (%) ("52) + 5 trees. This is always an odd number. When n' = 2 the
forests contain 2525 trees.

Example 5.3.2 Letn = 4n'+2. For eachn' > 2 there ezists a 2-ezceptional forest of (4,n)-labelled
trees. The forest contains all trees:
(31,172, 73, 74})(J5) where j1 < j2 < j3 < ja and where j1 < js < j2 or j3 < j5 < Ja.
(1),(3),....,(4n' + 1).

Each branch of length 2 appears an even number of times.

The branch {{i1,1%2,13,%4}, {is5,%6,17,178} } appears a number of times depending on the number of
vertical lines in the following kind of figure:

~_

4 4 2 0

The branch {{i1,%2,%3,14}} appears in all trees (of height 2) ezcept (i2 —11)+ (ta — t3) which counted
modulo 2 is 11 + i2 + i3 + 14. This is the same number (modulo 2) it appears in trees of height 1.

When n' = 2 this is a forest of 635 trees. I conjecture that for ¢ = 2 this is the smallest
exceptional forest of PU-trees.

Both examples resembles the fact that Count(2) implies Count(4) in models of IAy. The next
example is derived from lemma 5.2.6

Example 5.3.3 Let ¢ = 3, p =9 and n = 9n' + 3, n’ > 3. Consider the forests Fs3 g, which
contain the (9,n)-labelled PU-trees:

(1)  The trees of the form (i1, W1)(i2, W3)(33) where i1 < i3 < i3 < n and where W1, W, are two
disjoint 8-element subsets of {1,2,...,n}\ {41,12,43}.

(2)  Two copies of each tree of the form (i1, W1)(t2) where iz = 1 modulo 3 and 11 < iz < n.
(3)  Each tree of the form (i1, W1)(i2) where i3 = 2 modulo 3 and i1 < 5.

(4)  Each tree of the form (i1) where (") = 1 modulo 3.
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(5)  Two copies of each tree of the form (i1) where (n?l) = 2 modulo 3.

A careful checking shows that each branch appears 0 modulo 3 times. The forests contains 1 modulo
3 trees. In the smallest case (i.e. when n’=3) the forest contains

30\ [27) (19 C n—1
(3)(8)(8)+Ei2]>7'a.7:312+2i2j>i,j=32 1+Eim0d(( 5 ),3)

trees. This is a forest of 681259986982585 trees. This is not the smallest exceptional forest for
qg=3.

Example 5.3.4 Consider the forest F which contains:

t copies of each tree (11, {12,13, -.-, %9} )(J1, {72, ---Jo} ) (k) where i1 < iy < ... <'dg, 91 < J1, J1 < J2 <
< Joand if i, < k < i,41 and js < k < js41 then r + s =t modulo 3.

t copies of each tree (i1, {iz,...i9})(7) where 11 < iz < ... < ig and if i, < j < i,41 thent = r modulo
3.

t copies of each tree (i) where t = 1 modulo 3.

I claim (without proof) that each branch appears 0 modulo 3 times. However for eachn = 9n'+3
n' >3 | F |# 0 modulo 3. More specifically
| F =1 (3)(75°) - (n— 18). In the case when n' = 3, F only contains 16821302548060 PU-trees.
I conjecture that this is the smallest exceptional forest for ¢ = 3.

Example 5.3.3 and example 5.3.4 resembles the fact that Count(3) implies Count(9) in models of
IAq. From the examples we notice a general feature. The trees of maximal height A are very
homogeneously organised and easy to describe. The trees of height A — 1 are still quite regular but
each such tree’s frequency 0 < v < ¢ is slightly more complicated to describe. The collection of
trees of height 1 have the frequencies which are the most complicated to calculate.

In the next section it is shown that all exceptional forests asymptotically (when n — oo and
the height of all trees is bound by a constant) can be assumed to have the same feature.

6 The negative part

6.1 Forests of (D, R)-labelled trees

The negative part of the classification states that Count(g) does not imply Count(p) when p contains
a prime factor which is not in q. We consider the case where all terms in the underlying language
L have (at most) polynomial growth-rate. By the first main result theorem 4.1.1 it suffice to show
that for each A € N asymptotically (when n — oo, and h(F) < h) there are no g-exceptional forests
Ty,Ts, ..., Ty of (p,n)-labelled trees.

This is shown by considering forests T}, T}, ..., T, of specially labelled trees corresponding to the
PHP x versus Count(q) problem.

Definition 6.1.1 A (D, R)-labelled tree T is a decision tree for constructing a partial bijection
f: D — R. We always assume that D N R = (). Each vertex v € T corresponds to a certain stage
fv in the construction of f. At the root vyt we have f, ., = 0.
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At each vertex v (except the top node) there is a assigned a question, i.e. an element u €
D U R\ (dom(f,) Uran(f,)). The possible answers correspond to the sons of v. If w € D, there is
an edge to a son, for each » € R\ ran(f,). Each of these edges lead to a vertex v’ in which f, O f,,
and fy(u) = 7 (and | for |=| fo | +1). Similarly if w € R. In this case there is an edge for each
d € D\ dom(f,). Each of these edges lead to a vertex v’ in which f, D f,, and f,/(d) = u (and

| for |=] £ | -I'l)
The type of a branch through 7 is identified with the partial map f, constructed at the leafs

v. &
Definition 6.1.2 The height A(F) of the forest 7 denotes the maximal height of a tree T € F. &

Definition 6.1.3 A (D, R)-labelled tree T is a PU-labelled tree (= on PU-form) if at each level
all but possible one vertex is a top node. O

Observation 6.1.4 A (D, R)-labelled tree T on PU-form can be written of the form:

(w1, w3)(ui, ud)...(ur ™ ug ') (u)
Iful € D thenub € R and if ut € R then ub € D (i = 1,2,....,1 — 1). The element ' belongs to
either D or R. In the first case we say T is of D-type, while we say that T is on R-type.

As an example consider the following (obvious) proposition:

Proposition 6.1.5 Suppose that F is a forest which solely consists of (D, R)-labelled trees of D-
type. Suppose also (as usual) that | D |<| R |. Suppose that each branch o in F appears 0 modulo
q times. Then the forest F contains 0 modulo ¢ trees.

Proof: Let p : D — R be an (total) injection. Each tree T' € F contains exactly one branch a with
a C p. Thus p induces a partitioning of the trees in F into disjoint classes which each contains 0
modulo ¢ trees. |
If the forest F contains trees of both D-type and R-type the situation becomes more complicated.

Example 6.1.6 Let ¢ € N. Consider the following forests F of (D, R)-labelled trees. For each
d € D it contain (g — 1) copies of (d), and for each r € R it contain the tree (r).

This forests F contains | R | — | D | modulo q trees. Each type of branch appears 0 modulo q
times. So trivially if | R |#| D | modulo q, there exists a forest F in which all branches appears 0
modulo q times, but | F |# 0 modulo gq.

This type of forest is trivial. It corresponds to the obvious fact that Count(g) implies PHP, when
p # 0 modulo gq.

Definition 6.1.7 A forest F of (D, R)-labelled trees is called (g, !)-exceptional if
(i)  Each type branch appears 0 modulo ¢ times.

) |R[=|D|+¢"
(iii) The number of trees in F is not divisible by g. &
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Example 6.1.8 Suppose | R | — | D |= 4p' + 2 for some p' € N. Assume that | R | is an odd
number. Let F denote the (D, R)-labelled forest which contains the following PU-trees:

(1)  All trees of the form (d,r1)(r2) where d € D and vy > 7o when | 71 — 72 | is odd, and 71 < 72
when | 71 — 74 | is even.

(2)  All trees of the form (d1,7)(d2) where r € R and dy < ds.

Each branch appears an even number in F. However, the forest F contains

|D|(|12%|)+|R|(|12)|)

trees which is always an odd number. The smallest ezample of this form is when | D |= 5 and
| R |= 7. In this case F contains 175 trees. I claim without proof that this is the smallest (2,1)-
exceptional forest. The forest resemble the fact that Count(2) implies PHP,.

Our general machinery allow us to prove that there exists exceptional forest (without explecit
constructing them!). More specificaly there are (g,!)-exceptional forests for each ¢,/ € N, ¢ # 1
(we do not need this fact). This follows by combining:

(1) A version of theorem 4.1.1 for the PHP ; versus Count(q) problem.
(2) That PHP, follows from Count(q)
(3) That PHP follows from PHP; (according to [23]).

This argument is non-constructive (in so far the forcing construction is non-constructive). How-
ever it turn out that the existence of (g,[)-exceptional forests can be proved by constructing them
explecitly along the same lines as the constructions in section 5.

6.2 Projecting forests

Let T be a (p,n)-labelled tree. Suppose n = pn' + ¢! for ¢ € N\ {1} and I € N. Then we can
transform it to a (D, R)-labelled tree by the following procedure.
First divide I := {1,2,...,n} into p disjoint sets D;, Dj,...,D,_1 and R such that | D; |=|

Dy|=...=| Dy |=n"and | R|=7n'+¢". Let D:= D;. For j = 1,2,...,p— 1 chose bijections
y; : D; — D. Let us call a subset {¢1,1s,..,%p} C I for regularif i, € R,1; € D;, 7 =1,2,..,p—1
and y1(41) = y2(%2) = ... = Yp—1(%p—1). A branch {44, .., 4,} is regular if each 4;, j = 1,2,..,71s

regular. By use of this definition it is straight forward to show that:

Lemma 6.2.1 Let T be a (p,n)-labelled tree. Suppose that n = pn'+ q¢' and let Dy, .., D,_1and R
be given as above. Then the set of regular branches in T form a new tree T' which is (D, R)-labelled.
Furthermore h(T") < h(T).

If T is on PU-form, then T' will also be on PU-form.

Instead of projecting a single tree we can project forests. The important point is that the projection
of an g-exceptional forest of (p,n)-labelled trees produces an (g,[)-exceptional forest of (D, R)-
labelled trees.
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Corollary 6.2.2 Let F := {T1,T>,..,Tu} be a forest of (p,n)-labelled trees. Suppose F is an g-
exceptional forest. Or more specifically suppose that each branch in F appears 0 modulo ¢ times,
but u # 0 modulo q. Suppose also that n = pn’ + ¢'. The projection of the trees Ty, ..., T, gives an
(g,!)-exceptional (D, R)-labelled forest F'

(with | D |=n' and | R|=n'+ ¢'). Furthermore h(F') < h(F).

The condition that n = pn’ 4+ ¢' might not in general be satisfied for a given n. However, usually
we do not lose any generality by assuming n is of this form. To see this consider the following
procedure:

Definition 6.2.3 Suppose that p is a partial partition of I := {1,2,...,n} into disjoint p-element
subsets. Consider a (p,n)-labelled tree T'. For each branch (=condition) a through T' consider the
following procedure. If a is incompatible with p remove it. Otherwise replace it by 8 := a \ p.
Suppose that p’ is a partial bijection from D to R. Consider a (D, R)-labelled tree T'. For each
branch (=condition) o' through T consider the following procedure. If o’ is incompatible with p’
remove it. Otherwise replace it by g’ := o'\ p'. &

Lemma 6.2.4 (Stability) Suppose that T is a (p,n)-labelled tree. Let p be a partial partition of
I ={1,2,...,n} into disjoint p-element subsets. Suppose that

p-(R(T)+ | p|) < n. Then the collection of all branches 8 which are produced from some oo € T (as
described in the first part of definition 6.2.3 ) can be organised into a (p,n')-labelled tree T” where
n'=n-plpl

Suppose that 77 is a (D, R)-labelled tree. Let p’ be a partial bijection from D to R. Suppose that
h(T)+ | p' |< n. Then the collection of all branches 8’ which are produced from some o' € T (as
described in the second part of definition 6.2.3) can be organised into a (D', R')-labelled tree T"*'
where D’ := D \ dom(p’) and R’ := R\ ran(p’).

If T (T") is a PU-tree then T° (T""') is a PU-tree.

Proof: It suffice to show the lemma when | p |= 1. Suppose that p := {{¢1,72,...,7p}}. Let V
be the set of vertex in T' which have assigned v € {11, ..,%,}. Let E; denote the set of edges in T
which has assigned p-subset A C I with non-trivial intersection with {71, ..,7,} (i.e. # 0 and # A).
Let E) be the set of edges which have assigned A = {11,13, .., %p}-

For each vertex (=question) in V all edges (but exactly one) edge (=answer) belongs to E .
Remove all these edges (and the sub-tree above this). Then contract the edge in Ej. Finally,
after having exhausted this procedure, remove all edges in E,; (and the sub-tree above this). The
condition that p(A(T)+ | p |) < n is exactly what in general is required to ensure that 77 actually
becomes a properly labelled tree. The second part of the lemma is showed similarly. The last claim
is also straight forward to check. O
The lemma is one of many stability results which are important for the overall argument. In short
it shows that trees (PU-trees) remains on this form when they are “hit” by a restriction p.

The following main lemma gives us an understanding of the asymptotic behaviour of exceptional

(D, R)-labelled trees.
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Lemma 6.2.5 (Main lemma) Let g be a prime number. Let k,l € N. There exists dg € N such
that for any (¢*,1)-ezceptional forest of (D, R)-labelled trees, where
do <| D |<| R |, we have h(F') > ¢'~*.

Corollary 6.2.6 Let p be any prime number which does not appear in ¢ = ¢ ¢;*...¢27. Fiz h € N.
There exists ng such that for each n > nqg each forest F := {T1,Ts,..., T} of (p,n)-labelled trees
never simultaneously satisfies:

(1)  All branches appears 0 modulo g times.

(2) h(F)<h.

(3) w# 0 modulo gq.

Proof: Suppose that (1) and (3) hold. Choose j € {1,2,..,7} such that v # 0 modulo q;-xj.
According to the assumptions F is an q;-xj-exceptional forest of (p,n)-labelled trees. By lemma
6.2.4 we can assume that n = pn’ + qé- for any [ given in advance (of course [ has to be reasonable
i.e. ¢’ << netc). Choose [ such that q;_aj > h. By corollary 6.2.2 the projected forest F'is (q;-xJ ,0)-
exceptional and h(F’) < h(F). According to lemma 6.2.5 h(F') > ¢"=% > h. Now A(F') < h(F)
so this contradicts (2). O

6.3 Creating order among trees of maximal height &

Lemma 6.3.1 Fiz ¢ € N\ {1}, and fiz [,h € N. For each dy € N with dy > h, there ezists
(a very large) dy € N such that for each forest F = {T1,Tz,...,T,} of (D, R)-labelled trees with
| R|=| D | +¢', M(F) < h and | D |> d; the following is true:
There ezists a partial bijection p : D — R, such that the forest F° := {T{,Ts,..,Tf} of (D', R')-
labelled trees, with D' = D \ dom(p) and R' = R\ ran(p), satisfies:
(1)  For each h — 1 element subset {dy,dz,..,d,—1} C D' with dy < d3 < ... < dp—1 and for each
permutation 7 : {1,2,..,h} — {1,2,..,h} the number (modulo q) of trees (in the forest F*) of the
form

(d1, 7r(1))(d2, Tr(2)) -+ (dhe1, T (h=1))(T(R))
does not depend on the elements 1y < 79 < ... < 7 in R'.
(2) For each (h — 1)-element subset {dy,ds,...,dp—1} C D' (where dy < d3 < ... < dp_1), for each
element d, € D'\ {dy1,ds,..,dn_1}, and for each permutation = : {1,2,....h— 1} — {1,2,...,h— 1}
the number (modulo q) of trees of the form

(d1, Tr(1))(d2y Tr(2)) (A1, Tr(n-1))(dR)
does not depend on the elements 1y < 79 < ... < 71 n R'.

(3) | D'|> do.

Proof: Let Dy C D be a subset with | Dy |> df for some df, much larger than dy. The size of dj
can be expressed in terms of the estimates arising from the second part of the argument (where
we ensure the validity of property (3)). For each h — 1 element subset {d;,dy,...,dr—1} C D; with
di < dy < ... < dp_1 and for each permutation 7 : {1,2,..,h} — {1,2,...,h} we define a map
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F(d1,ds, ...,dp—1; 7) which maps h-element subsets of R to the set {0,1,2,..,g—1}. It is defined by
letting F(d1,d2,...,dn—1;7)({7r1,72, ..., 7a}) (where 7y < ro < ... < 71,) denote the number (modulo
g) of the PU-trees

(%) (d1, 7r(1))(d2s Tr(2)) (o1, Pa(h1)) (T (R))

These maps induce as a map F which to each h element subset {r1,72,...,7n} C R takes one
ldo |
of q(h—ol)h!-values. This value expresses uniquely for each A — 1 element subset of D; and each

permutation 7 : {1,2,..,h} — {1,2,...,h}, the number (modulo ¢) of PU-trees of the form (k).

Now by Ramsey’s theorem if dy is sufficiently large (not depending on F ) there must be a
set Ry C R with | Ry |>| Dy | +¢' and which is homogeneous for the “colouring” F. By possible
making R; slightly smaller we can ensure that | D\ D; |=] R\ R; |. Choose a partial bijection
p: D — R such that dom(p) = D\ D; and ran(p) = R\ Ry. This ensure that the new restricted
forest satisfies property (1).

This procedure is now repeated (with df replaced by do so (3) becomes satisfied) such that
property (2) becomes satisfied. Notice that application of a new p’ does not destroy property (1)
(see lemma 6.3.3 if necessary). o

Definition 6.3.2 Two tuples < 71,72,..,7, > and < 7,75, ...,7;, > have the same order structure
if for the same permutation 7 we have that 7,(1) < rr(2) < ... < Tr(n) and r;r(l) < T,/,r(2) <. < T;(h).

&

Lemma 6.3.3 (Stability) Suppose that F := {T1,Tz,...,Tu} is a forest of (D, R)-labelled PU-
trees. Suppose all trees of mazimal height h satisfies (1) and (2) in lemma 6.3.1. For any partial
bijection p : D — R, with h+ | p |<| D |, the forest F' := {T{,Ty,...,TF} of (D', R')-labelled trees
(D' := D\ dom(p), R' := R\ ran(p)) also satisfies (1) and (2).

Proof: By the second part of lemma 6.2.4, we only have to check that (1) and (2) in lemma 6.3.1
will be satisfied. To show (1) we have to prove that the PU-trees

(dl, Tl)(dg, Tg)...(dh_l, Th—l)(rh)

and
(d1,71)(d3, 75)--(dhy, Tho1)(7h)
appears the same number of times (modulo ¢) when d; < d2 < ... < dp_1, when d} < d} < ... <

dj_,, and when the order type of < 71,73,..,74 > and < 7,75, ...,7}, > are the same. This follows
from the fact that none of the representations can have been altered by p. a

6.4 Creating order among trees of height 2’ < h

Let F be a forest of (D, R)-labelled trees of PU-form. Write F as the union F; U Fp U ... U Fp,
where the sub-forest 75/, 1 < A’ < h contains all trees of height A’. Suppose that we have already
achived that all trees in Fp» (h' < A" < h) satisfies condition (1) and (2) in lemma 6.3.1. By
the same Ramsey type of argument as in lemma 6.3.1 there exists a restriction p (i.e. a partial
bijection) such that all trees in F}, satisfies (1) and (2) in lemma 6.3.1 with A replaced by A'.
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Consider the trees in F? of height hih' <h < h. In general there will be a flux of restricted
trees T° which originate from some T € Fpn with h < A" < h Tt is possible to construct
restrictions p such that the flux actually ruin what has already been achived (but I believe only
if F not is exceptional). However it turn out that if we choose p in a suitable way (there are
various choices) the number (modulo q) of productions of a tree (d*, 71)(d?,72)...(d¥ =1, 7h'=1)(z1")
(or (d*,7)(d?,7?)...(d¥ 1, 7" ~1)(d")) can be expressed as a polynomial in d',d?,...,d* "' and
1,72, ..., 7" modulo ¢" ¥ (when these elements are enumerated according to their size in D’ :=
D \ Dom(p) and R’ := R\ Ran(p)). In other words suppose that we have already achived that
all trees in Fpn (' < h” < h) satisfies condition (1) and (2) in lemma 6.3.1. Then without loss
of generality we can assume that all trees in Fp» (A’ < h” < h) satisfies condition (1) and (2) in
lemma 6.3.1.

Definition 6.4.1 (Strong normal form) A forest F := {T1,T5, ..., T} of PU-trees is on strong
normal form if for each A’ < h:

(1) For arbitrary d; < d3 < ... < dp_; and for each permutation 7 : {1,2,...,h} — {1,2,...,h}
the number (modulo g¢) of trees of the form

(d1, rr(1))(d2, Tx(2)) - - - (dhe1, Tr(h1=1) ) (Pm(hr))

only depends on residue classes modulo qh_hl of the elements 71 < 79 < ... < 7, and d; < dy <
o< dpr_q.

(2) For arbitrary di < d2 < ... < dp_1, for each dpr € D\ {d1,d2,..,dn—1} and for each
permutation 7 : {1,2,...,A' — 1} — {1,2,..,h’ — 1} the number (modulo g) of trees of the form

(d1, 7r(1))(d2s T(2))--(Bhi—1, T —1) ) (dnr)

only depends on residue classes modulo qh_h/ of the elements 7y < 73 < ... < rp—1 and d; < dp <
... < dp_1 and dp. )

Definition 6.4.2 For each permutation 7 of of {1,2,...,~'} let F&(r;c1,c2,...,cp;s) denote the
block of trees of the form (di1, 7x(1))(d2, Tr(2)) - - - (dp—1, Pr(h1—1))(Tr(n1)) Where dy < d2 < ... < dpiy,

71 <7y < ...< 7y and r; = ¢; modulo s, 7, = ¢ modulo s, ..., r = ¢p modulo s.

Similarly for each & € {0,1,...,h’ — 1} and for each permutation 7 of {1,2,...,h' — 1} we let
FR(m,k;e1,¢2,...,cni_1; 5) denote the block of trees of the form

(dl,TW(l))(dg,Tw(g)) .. -(dh’—laTvr(h’—l))(dvr(h')) where d; < dy < ... < dp'_1,

di < dp < dgy1, 7 <72 < ...<7rp and r1 = ¢; modulo s, 7o = ¢y modulo s, ..., Pp_1 = cp_1
modulo s. &

Notice that a forest on strong normal form can be got as a union (repetitions might appear) of
blocks .7-"33(71'; €1,C2,-++,¢;;¢"7) and ]:jD(ﬂ', Eici,cay--eyci-1347 7).

We are now ready to show that the regularity among the trees of height [ (for suitable restrictions
p) get inherited by the collection of trees of smaller height.
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Lemma 6.4.3 (Stability) Suppose d',d and h are given numbers such that d' < d — h. Let p be
a restriction where dom(p) = {1,2,...,d'} C D, where d =| D |) and where ¥Yr,r' € Ran(p) :

| 7 — 7' |= 0 modulo ¢". Assume p is monotone i.e. that for all 3,5 € Dom(p) with i < j we have
p(2) < p(7). Suppose that F is a forest on strong normal form and suppose that each tree in F have
height < h. Then F* remain on strong normal form.

Proof: The restriction p is of the following form:

p undefined

1p "

D - - @ — — @
v .

1r

TR

p~ ! undefined

This choice of p is somewhat arbitrary. The main point of the choice is that the number of
productions of a tree (d*,7')(d?,r2) ... (&1, 77~ 1)(+?) (or (d*,7})(d%,7?)...(d?"1,»771)(d?)) can
be expressed as a (low degree) polynomial (modulo ¢ ") in the elements
d*,d? ...,d", 71,72, ... 77 (when these elements are enumerated according to there size in D’ :=
D \ Dom( ) and R’ = R \ Ran(p)).

That this can be obtained is not surprising because the number of elements between any neigh-
bours » and 7’ (in R’ := R\ Dom(p)) is —1 modulo ¢” for some v = v(r,7') > h.

In order to avoid unreasonable heavy notation we illustrate the point by considering a few
typical examples. The first diagram show how the PU-trees of the form (d*,r!)(d?,r%)(r®) can

arrive.

(d1,71)(d2, 72)(ds, 73)(da, 74)(r5)

(d!, r1)(d?, r2)(r3) p (d1,71)(d2, 72)(d3, 73)(ra)

’\ dl,Tl d2,7“2)(7“3)

In the first case d3 := d',r3 := »,d4 := d?,74 := 72 and r5 := 3. The bar indicates that
p is defined for this element. There is one such tree for each 71,7 (with < di,71 >€ p and
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< dy, Ty >€ p), which stand in the relation to 7!, 72 and r® which is specified by 7. This relation
could forinstance require that #; < 75 and that ! < 71,7, < 7. Now this number o depends on
si=r3—rl —1—|R'n{rt+ 1,71 +2,...,73 — 1}| the number of possible choices of 7; and 7,. Let
7% and 7! denote the values of 7 and r! in the enumeration of R’ when these elements are listed
according to size. Then clearly s = 73 — r! — (73 — #1). In the example a = () = (TS_Tl_éfs_fl)).
Now we assumed that > = 7! modulo ¢* so a (modulo ¢) only depends on the values of #* and
71 modulo ¢? (actually modulo ¢ except when ¢ = 2). In other words (in general) if the elements
in R’ are enumerated according to size, the flux @ modulo ¢ only depends on the values of 7!, 7?2
and 7® modulo ¢" in the new enummeration. In the second case (where we consider the flux 3)
dy = d', 7y := rl,d3 := d?, 73 := r% and 74 := r3. There is one such tree for each #; which stand
in the relation to 7', 72 and 7 which is specified by 7. The numbers 3 (modulo ¢) of such trees
only depends (after having re-enumerated the elements in R \ Ran(p) according to their size) on
the values of r!,7% and 7* modulo th (k' = 3) in the new enumeration. The third case (where we
consider the flux v) d; := d',r1 :=7l,dy := d?, 7y := r? and r3 := r>. There is exactly one such
tree for each such three in the original block.

The next diagram show how the PU-trees of the form (d*, r!)(d?,7?)(d>) can arrive.

o (d1,71)(da, 72)(d3, 73)(ds, 7a)(ds, 75)...
B (d1,71)(d2, 72)(d3, m3)(7a)

(d' ) (d, P (P (d1,71)(dz,72)(da, 73)(ra)
5 (d1,71)(dz,m2)(ds, 73)(ds, 74)(ds)
. (d1,71)(d>, 72)(da)

In the first case dy := d*, 7y := 71,d3 := d?, 73 := 72 and d4 := d>. The bar indicate that the element
either belong the domane or range of p. Furthermore < d;,7; >€ p. Again the number a (modulo
q) of such threes are purely determined by r! and r? modulo ¢" in the reenumeration. (where
h' = 3 in this example). In the second case d; := dt,r :=7r1,dy :=d?, 7y := 7% and d3 := d°. The
bar on 74 (and lack of bar on r3) indicates that 74 belongs to Ran(p). The number § (modulo g)
of such trees is purely determined by r! and 72 modulo ¢” in the reenumeration. The third case is
treated simmilarly.

The case of § is very interesting. Here dy := d', 7y := 7!, d3 := d?, 73 := r? and d4 := d°. The
element ds belongs to Dom(p) and < di,71 >€ p. The number of values by ds depends on dy. Tt
is either dy — 1, dy — dy, d3 — dy , dg — d3 or | Dom(p) | —d4. For each d; < d' there is such a
contribution. Thus the number § is either 2(d' — 1)(d' — 2) or d' - d; — 2d*(d' — 1) or just d* — d?,
d® — d* or | Dom(p) | —d®. So in all cases the number § (modulo ¢) only depends on d*,d?* and d*
(modulo ¢?).

From these examples it should now be clear that the number of productions of a tree
(db,71)(d2,r?) .. (&2, 7771 (#9) (or (dY, rY)(d?,72) ... (1,777 1)(d?)) in general can be expressed
as a polynomial (modulo ¢") of degree < h — j in the elements d',d?,...,d?,r!,72,... 77 (when
these elements are enumerated according to there size in D’ := D \ Dom(p) and R’ := R\ Ran(p)).
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In the general argument it is worth noticing that (j) = (SJI) modulo ¢ whenever s = s’ modulo ¢’
(whether ¢ is a composite number or is a prime number). Thus F remain on strong normal form
when it is “hit” by p. O

If we combine this lemma with lemma 6.2.4, 6.3.3 and lemma 6.3.3 we get:

Lemma 6.4.4 (Strong normal form) Fiz g € N\ {1}. For all h,l € N there ezists d € N such
that the following hold:
Suppose that F := {11, T3, ...,Tu} is a (D, R)-labelled forest of PU-trees where all trees have height
< h and where | R |=| D | +¢'. Then there exists a partial bijection p : D — R such that F° :=
{T{,T5,...,Tf} is a forest of (D', R')-labelled trees (where D' := D \ dom(p) and R' := R\ ran(p))
on the strong normal form.

Furthermore if F is (g,1)-exceptional, then F* is (q,!)-exceptional.

Now we are ready to show the main lemma (lemma 6.2.5)

Proof: By a similar reducing procedure as the one behind lemma 3.2.1 we can assume that all
trees in F are PU-trees. According to lemma 6.4.4 we lose no generality by assuming that F is on
strong normal form. Also we can assume that |D| = 0 modulo ¢®**'. For each d € D and r € R
we can consider the branch {< d,r >} of length 1. It appears 0 modulo ¢* times so we have the
identity:

1) ()~ =1 (dr)~]+](d)]+](r)|= 0 modulo ¢*.

Here (d, %) ~ is the collection of PU-trees (counted with multiplicity) of the form

(d, ra)(ud, u3)....(ug ™ ug ) ()

Similarly (d,7)~ is the collection of PU-trees of the form

(d, 7)(uf, u3)....(ur ™, ug ) ('),

(d) the collection of copies of the tree (d), and (7) is the collection of copies of the tree (7). The
forest F is on strong normal form so %4 |(d)| = 0 modulo ¢* and %, |(r)| = 0 modulo g™
where |R| — |D| = ¢'. Later we assume [ > k so the number u of trees in ' is given by:

(2) w=2ZX4ep |(dyx)~| + Xaep [(d) |+ Zrer | (7)]

= X4ep | (d,%)~|.

Now for each d € D consider d», d3, .., d;_1,d;. Consider the set of trees of the form
(d,r1)(dz2,72)...(d1—1,71-1)(m1) or (d,m1)(d2,72)...(d1—1,71-1)(d;) where 7,75, ..,7; belongs to a cer-
tain type (expressed by the relative size of rq,..,7;, but also taking their residue classes modulo

¢ into account). The number of such trees is 0 modulo ¢'~* provided | R |=| D | +¢'. But then:

(3) | (d,*)~|= 0 modulo ¢* for each d € D.
Thus u = B4ep | (d, *) ~+|= 0 modulo ¢*.
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6.5 Brief discussion of the general problem

The method provided in this paper only give an asymptotic classification of exceptional forest. This
is good enough for a complete classification of the Count(p) versus Count(g) problem in the case
of polynomial growth rate.

The fact that forests on the strong normal form remains on this form when ‘hit’ by a (randomly
chosen?) restriction is very important. And it is very promising for the full classification (when n
is large). The critical question is whether we can create order fast enough? Is it possible to create
sufficiently much regularity before we have used the elements in I = {1,2,...,n}?

In the first version of this paper I applied a different strategy to transform a hypothetically
given exceptional forests F into an exceptional forest on a normal form. This was done by selecting
a suitable collection G of group actions on F. For each g € G I defined a forest F9 containing the
same number of trees as 7. Now by a suitable choice of G (so u- | G |# 0 modulo g) the forest
Ugeg F9 remains exceptional. By a proper choice of G it was argued that the resulting forest would
get efficiently closer to the normal form. This idea did not a priory require any strong assumptions
on the height of the forest. However the argument was incomplete and the revised version settled
for a weaker (but sufficiently strong) version of this claim.

7 Some applications

There are various alternative formulations of the classification. It is well known that complexity
theory can be viewed as recursion theory done within a finite set of unspecified size. The levels
in Arithmetical Hierarchy correspond to the levels in Polynomial Hierarchy [8]. It can be argued
that low complexity reasoning is reasoning which can be formalised within (arbitrarily large) finite
structures. Suppose that the universe is such an unspecified finite set. Although this is almost
impossible to picture it is consistent. Such an “axiomatic finite” universe can be axiomatised in
various ways. Its models (which are highly non-recursive) are of course not really finite.

As an example consider the following axiomatisation over second order logic. Suppose that we
have the full Arithmetical comprehension axiom schema,

Vz 3 X 9(z,2) oz € X.

Here %) is any first order formula. We allow % to contain set-variables. And assume that we have
the usual induction axiom

0eXAVn(neX—-n+1eX)—>VnneX.

If the underlying universe was not assumed to be finite this would be the celebrated and powerful
system ACA of analysis. If the underlying universe is axiomatic finite (e.g. satisfies the pigeon-hole
principle) we denote the axiom system by ACA®P. For this system

Theorem 7.0.1 Count(p) holds in all structures of ACA'*P + Count(q) ezactly when all prime
divisors in p appear in q.

Proof: (Outline) Combine the conservation results in [22],[23] with results for Bounded Arith-
metic. By these results ACA'P has the same deductive strength as IAg(a). By use of the usual
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coding methods the system is able to handle terms of polynomial growth rate. Thus the positive
part of the classification must remain valid if TAg(a) is replaced by ACA"P. a

It is also possible to link the result to length of proofs in propositional logic. This type of link was
first pointed out by J. Paris and A. Wilkie in [18].

Definition 7.0.2 A Boolean formula is a Boolean circuit where for each disjunction V; 7; and for
each conjunction A; 7; a particular bracketing is specified. The size and the depth of a Boolean
formula is defined in the obvious way. In the calculation of the depth, disjunctions V;7r; and
conjunctions A;7; are chosen maximally. &

Definition 7.0.3 A general propositional proof system P consists of:
(1) A finite number of substitution schemes.

A substitution scheme is a Boolean formula § which only contains special variables (substitu-
tion variables). A substitution instance of 6 is obtained by substituting the substitution variables
Y1, ---, Y& by Boolean formulas 7, ..., 7.

(2) A finite number of deduction rules.

A deduction rule w where 64, ...,0; and 6 are substitution schemes. A substitution in-

stance is obtained by substituting the substitution variables v, ..., yr by Boolean formulas 74, ..., .

A P-proof (in Hilbert style) of 7 is a sequence 7, ...,7, = 7 of Boolean formulas, such that each
M5, 7 =1,2,....,uis either a substitution instance of a substitution scheme, or there are 71, ...,7; < j
such that ml’ni’m’“ is a substitution instance of a deduction rule.

7

We only consider general propositional proof systems which are consistent and prove the usual
tautologies.

The size s of a propositional proof is s := X;s(7;), and the depth d is d := max; d(n;). &

Definition 7.0.4 A Frege proof system (or a textbook proof system) is a general propositional

proof system, where modus ponens ¥"%Y¥2 is the only deduction rule.

&
Definition 7.0.5 Let Count,(p) denote the tautology:
(Vicn V{asea} V{BieBra#B} (PAAPB))V (Vi<n Aficay 7P4)
where the sets A and B run through the p subsets of {1,2,...,n}. &

Theorem 7.0.6 Fizp € N. Let A, be the collection of all substitution schemes of the Count(q)
principle for ¢ € N which contain all prime factors of p. Let P be any general proof system to
which all the schemes in A, are added. Then the tautologies Count,(p), do not have bounded depth
polynomial size P-proofs.

47



Proof: Suppose that for arbitrarily large n € N, there exists a P-proof of depth < d and size
< exp(ne(")). Let R be a suitable relation with domain N”, » € w, which codes these proofs. Let
M be a countable non-standard model of Th(N) over some countable language L which extends
the language of Arithmetic and contains R. By overspill there exists a non-standard number n € M
which is not divisible by p, and there exists an M-definable sequence 64,65, ..., 8, of formulas, which
(within M) is a general propositional P-proof of Count,(p). Furthermore, we can assume that the
depth of the proof is < d, and that the size of the proof is < exp(n’) for some ¢ < % (the map
€: N — Q4 can without loss of generality be assumed to be L-definable, because otherwise L can
be extended with a relation which defines ).

Now choose a generic truth-table evaluation gg. Such an evaluation exists according to lemma
2.3.2. Consider the sequence 61, ..., 0, (considered as circuits) and notice that (8, )%
= (Count,(p))? = 0. According to corollary 2.4.2 there exists jo < u such that (8;,)°¢ = 0 but
(6;)°¢ = 1 for all j < jo. Now each substitution instance 6; of a substitution scheme has (6;)? = 1
for each general truth-table evaluation p. If §; is obtained from a deduction rule then (6;)°? = 1
provided that all the premises also have truth-value 1.

Finally we claim that all substitution instances of the Count(g) principle also get truth-value
1. Now if it got the truth value 0, then by the work in section 4 there would be a M-definable
generic system. By our refinement technique this would imply the existence of a specially labelled
(I,p)-forest in which all branches appear 0 modulo ¢ times. And the forest would contain a number
of trees not divisible by g. According to the combinatorial results in section 6 this (first order)
statement fails in the standard universe. We chose M to be a model of first order arithmetic, so
this is a contradiction. O

Theorem 7.0.7 Let M be a countable non-standard model of Th(N) over a countable first or-
der language L which extend the language of arithmetic. Suppose that p € N, p > 2 and
I:={1,2,...,n} C M for somen € M \ w not divisible by p. Let

M :={m e M: t(n) > m for some term ¢ € L}.

For any generic filter pg the partition pg (see definition 2.2.5) partitions I into disjoint classes,
each containing exactly p elements. If the terms t € L all have polynomial growth rate

(a)  (M3,pc) = ~Count(p).

(b) (M}, pc) satisfies induction for bounded L(P)-formulas.

(c) (M}, pc) |E Count(q) for all ¢ which contains all prime factors in p.

Proof: It suffices to show that the least number principle is valid for bounded L(P)-formulas
with parameters in M. Now each instance of the least number principle gets translated into a
Boolean circuit (or Boolean formula if we specify the bracketing) of the form LNP, (71, ...,7y) 1=
Ty V (Vij<u(77A(Ak<;Tk))). Furthermore, according to earlier observation, each translated instance
gets depth < 4 and size < exp(n') for some ¢ < nu. According to the key lemma (lemma 2.4.1) for
any generic filter pg if (7,)°¢ = 1, there exists jo < u with (7;,)? = 1 and (7;)° = 0 for j < jo. A
simple argument shows that LPN,, (71, ....,7,)?¢ = 1. Using lemma 2.1.6 (M, jg) satisfies induction
for bounded L(P)-formulas with parameters in M.

Again all Count(g) much be forced true when p contains a prime factor not in ¢. If not there
would exists an M-definable generic system. And thus by the refinement argument there would be
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a (I,p) forest with # 0 modulo g trees, in which each (type of) branch appears 0 modulo ¢ times.
This is a contradiction when p does not divide gq. a

Theorem 7.0.8 Suppose that all terms in L have polynomial growth rate, and contains at least
one unspecified relation symbol. Then IAq(L)+ Count(q) prove Count(p) ezactly when all prime
factors in p divides q.

Proof: (M}, pc) = IAo(L)+ — Count(p) + Count(g). o

8 Final remarks

The first version of this paper contained the complete reduction of the Count(p) versus Count(q)
problem. This reduced the problem to a purely combinatorial problem. The revised version of the
paper solves this problem explicitly (in the case of polynomial growth-rate). In addition the revised
paper develops the underlying theory in more details.

To end I would like to thank P. Beame, J. Krajicek, A. Macintyre, P. Pudlak, A. Razborov,
M. Thorup and A. Wilkie for many helpful remarks and comments. Independent of this paper it
has been shown that the topic is related to Hilbert’s Nullstellensatz (P. Beame, R. Impagliazzo, J.
Krajicek, T. Pitassi, P. Pudlak [6]), as well as related to the representation theory of the symmetrical
groups (M. Ajtai [4]). I hope these links will be further clarified and developed in the future.
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