
1

Utilising public information in Network Coding
Søren Riis

Queen Mary, University of London
(Technical report June 2005)

Abstract— We show that an information network flow problem
N in which n messages have to be sent ton destination nodes has
a solution (that might utilise Network Coding) if and only if the
directed graph GN (that appears by identifying each output node
with its corresponding input node) hasguessing number ≥ n. The
guessing number of a (directed) graph G is a new concept defined
in terms of a simple cooperative game. We generalise this result
so it applies to general information flow networks.

We notice that the theoretical advantage of Network Coding
is as high as one could have possibly hoped for: for eachn ∈ N

we define a network flow problemNn with n input nodes andn

output nodes for which the optimal through-put using Network
Coding is n times as large as what can be obtained by vector
routing or any other technique that does not allow interference
(between messages) . In the paper we obtain a characterisation
of the set of solutions for each flow problemNn. We use this to
prove a number of theorems for information networks.

I. NETWORK CODING

A. The wave approach to information network flow

In recent years a new area called Network Coding has
evolved. Like many fundamental concepts, Network Coding
is based on a simple mathematical model of network flow
and communication first explicitly stated in its simplicityin
[3]. Recently, ideas related to Network Coding have been
proposed in a number of distinct areas of Computer Science
and engineering (e.g. broadcasting in wireless networks [26],
[25], [24], data security [4], distributed network storage[7],
[1] and wireless sensor networks [16]). Network Coding has
also a broad interface with various Mathematical disciplines
(error correcting codes [19], [5], [11], circuit complexity [18],
information theory [12], algebra [14], [13] and graph theory).

The basic idea underlying Network Coding has been ex-
plained in numerous papers e.g. [14], [3], [18], [8].The idea
can be illustrated by considering the "butterfly" network in
figure 1a.

x y

y x

x y

y x

(a) (b) figure 1
The task is to send the messagex from the upper left corner

to the lower right corner, and to send the messagey from
the upper right corner to the lower left corner. The messages
x, y ∈ A are selected from some finite alphabetA. Assume

that each information channel can carry at most one message
at a time. If the messagesx and y are sent simultaneously
there is a bottleneck in the middle information channel. On
the other hand if we, for example, sendx ⊕ y ∈ A through
the middle channel, the messagesx and y can be recovered
at ‘output’ nodes at the bottom of the network.

The network in figure 1a can be represented as the network
in figure 1b. In this representation (which we will call the
‘circuit representation’) each node in the network computes
a function f : A × A → A of its inputs, and sends
the function value alongeach outgoing edge. Historically,
it is interesting to note that in this slightly different (but
mathematically equivalent) form, the idea behind Network
Coding (i.e. the power of using non-trivial boolean functions
rather than “pushing bit”) was already acknowledged in the 70s
(though never emphasised or highlighted) in research papers
in Circuit Complexity (see e.g. [23], [21], [17], [22], [2]). It is
also worth mentioning that in Complexity Theory many lower
bounds are proven under the assumption that the algorithm is
conservative, or can be treated as such. Conservative means
that the input elements of the algorithm are atomic unchange-
able elements that can be compared or copied but can not
be used to synthesise new elements during the course of the
algorithm. From a perspective of Circuit Complexity, Network
Coding is an interesting theory of information flows since it
correspond to unrestricted models of computation.

Information flow in networks falls naturally within a number
of distinct paradigms. Information flow can, for example, be
treated in a fashion similar to traffic of cars in a road system.
In this view each message is treated asa packet (e.g. a car)
with a certain destination. Messages (cars!) cannot be copied,
or divided. This way of treating messages is almost univer-
sally adopted in today’s information networks (e.g. wireless
communication, communication on the web, communication
within processors or communication between processors and
external devises). Another, less used possibility, is to treat
messages in some sense asa liquid that can be divided and
sent along different routes before it reaches its destination.
This approach (like, for example, in vector routing [6]) allows
messages to be spread out and distributed over large parts of
the network. Another and more radical approach is to treat
messages as“waves”. Recall that the signals carrying the
messages are digital (discrete) and thus certainly do not behave
like waves. It is, however, possible to transmit and handle the
digital (discrete) signals in a fashion where the messages (not
the bits carrying the messages) behave like waves subject to
interference and super position. More specifically, assumethat
A is a (finite) alphabet of distinct (wave) signals that can be
sent through a channel. The superposition of (wave) signals

2

w1, w2 ∈ A creates a new (wave) signalw = w1 ⊕ w2 ∈ A.
Thus mathematically, in the wave picture, the setA of wave
signals forms a (finite) commutative group with the neutral
element0 ∈ A representing the zero-signal.

The network in figure 2 illustrates the point that in specific
Network topologies there can be quite a large advantage of
treating messages as waves. The task of the network is to
send messagesx, y andz from the source (input) nodesi1, i2
and i3 to the three output nodeso1, o2 and o3. The receiver
(output) nodeo1 requiresx, nodeo2 requiresy and nodeo3

requiresz. We assume that channels are one-way and that the
messages are only sent downwards in the figure. All crossings
in the figure are ‘bridges’ and it is, for example, only possible
to move fromi1 to o1 by moving through channelp.

x y

3i

z

2i1i

r: x r: y r: z

o1 o2 3o

l1
l2 l3

p

p(x,y,z)

figure 2
If messages are treated as packets (cars) like in traditional

routing, or if messages are treated as a liquid, there is no
point in sending information throughl1, l2 or l3. All messages
x, y andz must pass through the channel labelled withp (for
‘public’). This clearly creates a bottleneck in channelp if we
assume that only one message can pass at a time.

If, however, messages are treated as waves we can send
p(x, y, z) := x⊕ y⊕ z, the superposition of the messagesx, y
and z, through channelp. And we can send superpositions
l1 := −(y ⊕ z), l2 := −(x ⊕ z) and l3 := −(x ⊕ y)
through the nodes with these labels. Nodeo1 can take the
superposition ofl1 and p(x, y, z) and then reconstruct the
message x= −(y ⊕ z) ⊕ (x ⊕ y ⊕ z). Similarly, nodeo2

(or o3) can take the superposition ofl2 (or l3) andp(x, y, z)
and then reconstruct the messagey = −(x⊕ z)⊕ (x⊕ y ⊕ z)
(or z = −(x ⊕ y) ⊕ (x ⊕ y ⊕ z). This shows that the wave
approach allows us to eliminate the bottleneck in channelp
in figure 2. Notice also that the wave approach increases the
overall network performance (of the network in figure 1) by
a factor3. 1

In general the advantage of the wave approach (compared to
any approach that does not allow interference) can be as large
as one could have possibly hoped for. We will later notice that
there exist information flow networks (withn source nodes
andn receiver nodes) for which the optimal throughput isn
times larger using the wave approach. Actually, there are even

1Notice that this increase of a factor3 comes at a certain ex-
pense. In the routing approach only7 channels are active (namely,
(i1, p), (i2, p), (i3, p), (p, o1), (p, o2), (p, o3) and channelp), while in the
Network Coding solution all19 channels are active. The success rate3

19
for

each active channel is higher in the Network Coding solutionthan in the
ordinary solution1

7

networks where the success rate for each active channel using
the wave approach is close (as close as we wish) ton times the
success rate for each active channel in a routing solution. The
wave approach usually requires more information channels to
be involved than traditional routing (or other methods thatdo
not allow interference). Yet, by allowing interference, the total
network performance divided by number of active information
channels can for some network topologies be close ton times
higher than any approach that is unable to utilise interference.

Network Coding allows messages to be sent within the
wave paradigm. In fact, super-positioning of signals (described
above) represents an important type of Network Coding we
will refer to as Linear Network Coding(see also [15]).
Although Linear Network Coding represents a very important
subclass of Network Coding, in general Network Coding
involves methods that go beyond linear Network Coding.
Certain network problems have no linear solutions, but require
the application of non-linear boolean functions [18], [8].Non-
Linear Network Coding has no obvious physical analogue.
Rather general Network Coding represents a paradigm of in-
formation flow based on a mathematical model where ‘every-
thing goes’. In this model there are no apriory restrictionson
how information is treated. Thus in Network Coding, packets
might be copied, opened and mixed. Sets of packets might be
subject to highly complex non-linear boolean transformations.

II. COHERENCE: UTILISING APPARENTLY USELESS

INFORMATION

A. A Guessing game with dice

While I was researching various flow problems related
to Circuit Complexity it became clear that a key problem
is to characterise and formalise what pieces of information
are "useful" and what pieces of information are genuinely
"useless" . It became clear that this distinction can be very
deceptive. A piece of Information that is useless in one context,
can sometime be very valuable in a slightly different context
[18].

To illustrate the problem Mikkel Thorup developed the
following game that illustrates a nice mathematical idea wede-
veloped during a meeting in 1997 [20]: Assume thatn players
each has a fairs-sided dice (each dice has its sides labelled as
1, 2, . . . s). Imagine that each player (simultaneously) throws
their dice in such a manner that no player knows the value of
their own dice.

1) What is the probability that each of then players is able
to guess correctly the value of their own dice?

2) Assume that each player knows the values of all other
dice, but has no information about the value of their own
dice. What is the probability that each of then players
correctly guesses the value of their own dice? (Hint:
The probability is NOT(1

s
)n- The players can do much

better than uncoordinated guessing!!)
3) Assume the ith player receives a valuevi =

vi(x1, x2, . . . xi−1, xi+1, . . . , xn) ∈ {1, 2, . . . s} that is
allowed to depend on all dice values except thei’th
player’s own dice. What is the probability that each of

3

the n players correctly manages to guess the value of
their own dice?

In question1 the probability that each player is right is1
s

and
thus with probability(1

s
)n all n players successfully manage

to guess correctly their own dice’ value simultaneously. Maybe
somewhat surprisingly in question 2, the answer depends on
the ‘protocol’ adopted by the players! An optimal protocol
appears, for example, if the players agree in advance to assume
that the sum of alln dice’ values is divisible bys. This
protocol ensures that all players simultaneously ‘guess’ the
value of their own dice with probability1

s
.

Question 3, can be answered using a minor modification
of the protocol just discussed. Letvi be defined as the sum
x1⊕x2⊕ . . . ⊕xi−1⊕xi+1⊕ . . .⊕xn modulos. Each player
then ‘guesses’ thatxi = −vi modulos. Again, the probability
that all n players simultaneously guess the correct value of
their own dice is1

s
.

B. Playing the guessing game on a graph

We will now define a generalisation of the dice guessing
game that is (surprisingly?) directly related to a certain type
(the so called multiple-unicast type) of information flow prob-
lems. Recall a graphG = (V, E) consists of a setV (the
vertex set) and a setE ⊆ V ×V (the edge set). Our definition
of a graph is sometimes referred to as directed graphs. In this
paper all graphs are directed.

Definition:
Assume that we are given a (directed) graphG =
(V, E) on a vertex setV = {1, 2, . . . , n} represent-
ing n players. We let GuessingGame(G, s) denote
the cooperative game defined as follows: Each player
v ∈ {1, 2, . . . , n} is randomly assigned a die value∈
{1, 2, . . . , s}. Each player sends the value of their die
∈ {1, 2, . . . , s} to each playerw ∈ {1, 2, . . . , n} with
(v, w) ∈ E. In other words, each nodew receives
dice’ values from a setAw := {v ∈ V : (v, w) ∈ E}.
Each player has to guess the value of their own
die. We want to calculate (assuming the players
have agreed in advance on an optimal protocol)
the probability that all the players (nodes) guess
correctly their dice values simultaneously. Question
2 (in section II) corresponds to the case whereG is
the complete graph onn nodes.

Definition:
A (cooperative) guessing strategy for the game
GuessingGame(G, s) is a set of functionsfω :
{1, 2, . . . , s}Aw → {1, 2, . . . , s} with ω ∈
{1, 2, . . . , n}. Notice that each player (node)ω is
assigned exactly one functionfω.

In figure 3, we consider six simple examples:

(iv)
(vi)

(v)

(iii)(ii)(i)

fig.3
Examples (i) and (ii) correspond to the dice guessing game

we already considered (with3 and 5 players). The players
have a guessing strategy

that succeeds with probability1
s
. In the guessing game based

on (iii) (or in general the cyclic graph onn points) an optimal
protocol appears if each node ‘guess’ that its own die value
is the same as the value it receives. This strategy succeeds if
each of the four dice has the same value i.e. with probability
(1

s
)3 (or in general(1

s
)n−1). Though this probability is low, it

is s times higher than if the players just make uncoordinated
random guesses.

In (iv) the graph contains no cycles so the players cannot
do any better than just guessing i.e. the players can achieve
probability at most(1

s
)4.

In (v) it can be shown that there are a number of distinct
guessing strategies that guarantee the players’ success with
probability (1

s
)4 (one, optimal strategy appears by dividing

the graph into two disjoint cycles (triangles)).
Finally, in (vi) we consider a graph with12 nodes (one

for each hour on a clock) and edges from(i, j) if the ’time’
from i to j is at most5 hours. Using the type of argument we
introduce later it is fairly simple to show that the players in the
GuessingGame(G, s) have an optimal guessing strategy that
ensures that the players with probability(1

s
)7 (i.e. with a factor

s5 better than pure uncoordinated guessing) all simultaneously
guess the value of their own die.

Definition:
A graphG = (V, E) has fors ∈ N guessing number
k = k(G, s) if the players in GuessingGame(G, s)
can choose a protocol that guarantees success with
probability (1

s
)|V |−k.

Thus the guessing number of a directed graph is a measure
of how much better than pure guessing the players can achieve.
If the players can achieve a factorsk better than pure random
uncoordinated guessing, the graph has guessing numberk =
k(G, s). Notice that a directed graph has a guessing number
for eachs = 2, 3, 4,

For many graphs (though not all) the guessing number
is independent ofs. The graphs in figure 3 have guessing
numbers2, 4, 1, 0, 2 and 5 (independently ofs ≥ 2). From
the definition there is no reason to believe that the guessing
number of a graph is in general an integer. Yet remarkably
many graphs have integer guessing numbers. Later we will
show that there exist graphs for which the guessing number
k = k(G, s) (for alphabet of sizes ∈ N) of a graph is not

4

an integer. We will show that there exist graphs where the
guessing numberk(G, s) even fails to be an integer for each
s ∈ {2, 3, 4, . . . , }.

Observation(A):
In GuessingGame(G, s) the graphG allows the play-
ers to do better than pure uncoordinated guessing if
and only if G contains a loop.

Observation(B):
A graph G = (V, E) contains a (directed) loop if
and only if its guessing number is≥ 1. If a graph
containsk disjoint loops its guessing number≥ k
(for eachs ≥ 2). A graph is reflexive if and only
it has guessing number|V |. Assume that the set
of nodesV in the graphG can be divided inr
disjoint subsetsV1, V2, . . . , Vr of nodes such that the
restriction ofG to each subsetVj is a clique. Then
the graphG has guessing number≥ |V | − r (for
eachs ≥ 2).

If a graph contains a (directed) loop the players can always
guess in an “inconsistent” fashion (e.g. all but one playersin
the loop guess their own die value to be the same as the value
they receive from the previous node in the loop. The ‘odd one
out’ guesses inconsistently with the other players that his/her
die value differ from the value received). If we combine this
with Observation A, we notice the curious fact that,the players
have a "good" strategy that ensures that they all succeed with
higher probability than uncoordinated random guessing if and
only if the players have a "bad" strategy that insures they never
succeed.

Sometimes it is convenient to focus on certain more limited
guessing strategies.

Definition:
Let B be a class of functionsf : Ad → A for d =
1, 2, 3, An important class appears if we letA
denote a fixed algebraic structure (e.g. a group, a
ring or a vector space) ofs = |A| elements, and let
the classB = LIN consist of all homomorphisms
(linear maps)Ad → A for d = 1, 2, 3, If all the
functionsfw belong to the classB we say the players
have chosen a guessing strategy inB. If B = LIN
we say that the players use a linear guessing strategy.

Definition:
A graph G = (V, E) has guessing numberk =
kB(G, s) with respect to the functions inB if the
players in GuessingGame(G, s) have a protocol with
all guessing functions inB that guarantees success
with probability (1

s
)|V |−k. We say G has linear

guessing numberklin = klin(G, s) if the players
have a linear guessing strategy that guarantee success
with probability≥ (1

s
)|V |−k.

III. N ETWORK CODING AND GUESSING GAMES

In this section we show that Mathematically there is a very
close link between Network Coding and the guessing games
we just defined. We will show that each information flow
problem is equivalent to a problem about directed graphs.

The translation between information networks and directed
graphs is most clean if we represent information networks
such that we place all computations (Network Codings) in
the nodes of the network. We refer to this representation as
the Circuit Representation. This representation is of course
“wrong” from a Network Coding perspecitive. However, from
a mathematical perspective the different representationsare
essentially equivalent. In general the circuit representation is
slightly more economical (usually save a few nodes) than the
standard representation in Network Coding. The representation
is more in line with circuit complexity, where the task of the
network is in general a computational task. Formally, each
source node is associated with a variable. Each node compute
a function of incoming edges signals. Each outgoing edge from
a node transmits the same signal (function value of node). Each
receiver node is required to produce a specific input variable.

In general, given an information flow problemN (in the
Circuit Representation) we obtain a directed graphGN by
identifying each source node with the corresponding receiver
node.

In figure 4 we see a few examples of simple information
networks together with their corresponding directed graphs.

x y

x z

y

z

y x

x y z

yxz

u v

(a) (b)

(c) (d)

y v

z

ux

figure 4
The information networkN in figure 4a (or figure 1b) is the

usual ‘butterfly’ network (presented in Circuit Representation).
If we identify the input node (source node)x with the output
node (receiver node)x, and identify input node (source node)
y with the output node (receiver node)y, we get the graph in
figure 4b.

The information network in figure 4c does not have any
obvious symmetries, but when input and output nodes are
identified, we get the directed graph in figure 4d that clearly
contains a number of symmetries. The translation shows that
nodesx and u (as well asy and v) are equivalent points.
That the points from a deeper mathematical perspective are
also equivant in figure 4c is not obvious at a first glance (but
this will follow from Theorem 1). The guessing number of the
graph in (b), as well as the graph in (d), can be shown to have
the value2.

In general we letCmultiple−unicast (the class of multiple-
unicast directed information networks) consist of informa-
tion networksN for which for somen ∈ N , n messages
m1, m2, . . . , mn ∈ A (selected from some alphabetA) have
to be sent from input (source) nodesi1, i2, . . . , in to output

5

nodeso1, o2, . . . , on. Somewhat formally, each source node
ij is associated a variablexj and each nodew (except
for the source nodes) are assigned a function symbolfw

representing a functionfw that is mapping all incoming signals
a1, a2, . . . , akw

to an elementa = f(a1, a2, . . . , akw
) ∈ A.

Each outgoing edge from a node transmits the same signal (the
function valuea of the node). Each receiver node is required
to produce a specific input variable.

For an information networkN ∈ Cmultiple−unicast we
associate a directed graphGN that appears by identifying each
source (input) nodeij in N with its corresponding receiver
(output) nodeoj . If N hasn input nodes,n output nodes and
m inner nodes (2n + m nodes in total) the graphGN has
n + m nodes.

We are now ready to state the surprising link that shows
that each information flow problem is equivalent to a problem
about directed graphs.

Theorem(1):
An information Network flow problemN ∈
Cmultiple−unicast with n input/output nodes has a
solution over alphabetA with |A| = s elements
if and only if the graphGN has guessing number
k(G, s) ≥ n.

The main point of the theorem is that it replaces the flow
problem - a problem that mathematically speaking involves
slightly complicated concepts likea set of source nodes, a set
of receiver nodesas well asa set of requirements (demands)
that specifies the destination of each input - with an equivalent
problem that can be expressed in pure graph theoretic terms
(no special input or output nodes). Actually we show the
theorem in a slightly stronger form:

Theorem(2):
The solutions (over alphabetA with |A| = s)
of an information network flow problemN ∈
Cmultiple−unicast with n input/output nodes are in
one-to-one correspondence with the optimal guessing
strategies (over alphabetA with |A| = s). Each of
these guessing strategies ensures that the players in
the guessing game played onGN have success with
probability(1

s
)|GN |−n (where|GN | is the number of

nodes inGN).

The following simple observation highlights (in quite a
geometric fashion) the difference between Network Coding
and traditional routing:

Observation(C):
An information flow networkN ∈ C has through put
k using ordinary routing (i.e. pushing each message
along a unique path) if and only the graphGN

containsk disjoint cycles.

b
d f

ea c

cea

d
e

f

ba c

b ca

(ii)(i)

(iv)

a b c

d
e

b d f

(iii)

b d f
f

a e c

figure 5
Consider the three information flow problems in figure 5(i-

iii). They are in circuit representation (i.e. all functions are
placed in the nodes, and each outgoing edge from a node
transmits the same function value). The three information net-
works in 5(i)-(iii) are non-isomorphic and are clearly distinct.
However if we identify the source nodes and the receiver nodes
in each of the networks, we get thesamedirected graph in
figure 5 (iv).

According to Theorem 2 there is a one-to-one corre-
spondence between solutions of each of the three infor-
mation networks 5(i)-5(iii), and the successful strategies in
GuessingGame(G, s). Thus, the set of solutions to each of the
three information networks 5(i)-5(iii) is in a natural one-to-one
correspondence. Before we prove Theorem 1 and Theorem
2, let us have a closer look at the networks in figure 5. A
(cooperative) strategy for the players in the guessing game
with the directed graph in figure 5 (iv) consists of6 functions
g1, g2, . . . , g6 such that:

aguess = g1(b, d)
bguess = g2(a, c, e)
cguess = g3(b, f)
dguess = g4(a, b)
eguess = g5(d, f)
fguess = g6(b, c)
For all players to guess their own message correctly we

must haveaguess = a i.e. we must havea = g1(b, d). Thus
assuming that we work under the conditional situation with
aguess = a, we can substitutea with g1(b, d) leading to the
equations:

bguess = g2(g1(b, d), c, e)
cguess = g3(b, f)
dguess = g4(g1(b, d), b)
eguess = g5(d, f)
fguess = g6(b, c)
Now pick any equation of the formxguess = h wherex

does not appear in the expressionh. We might for example
assumec = g3(b, f) (i.e. thecguess = c). Substitutingc with
g3(b, f) in the equations we get:

bguess = g2(g1(b, d), g3(b, f), e)
dguess = g4(g1(b, d), b)

6

eguess = g5(d, f)
fguess = g6(b, g3(b, f)
This system of equations still contains one equation of the

form xguess = h wherex does not appear in the expressionh.
Let e = g5(d, f) (assumingeguess = g5(d, f)) and substitute
this into the equations we get:

bguess = g2(g1(b, d), g3(b, f), g5(d, f))
dguess = g4(g1(b, d), b)
fguess = g6(b, g3(b, f))
For any fixed choice of functionsg1, g2, g3, g4, g5 and g6

let 0 ≤ p ≤ 1 denote the probability that a random choice of
b, d andf satisfies the equations (*):

b = g2(g1(b, d), g3(b, f), g5(d, f))
d = g4(g1(b, d), b)
f = g6(b, g3(b, f))
It is not hard to show that the probability thataguess = a,

cguess = c and eguess = e is (1
s
)3 (essentially this is

because the restriction ofG to the nodesa, c and d form
an acyclic subgraph. For a more general argument see the
proof of Theorem 2). Thus, the conditional probability that
the remaining players all guess correctly their own die value
is p, and the probability all players are correct isp(1

s
)3. Hence

- in agreement with Theorem(1) - the guessing number of the
graph in figure 5 (iv) is3 if and only if there exist functions
g1, g2, . . . , g6 such that the equations (*) hold for allb, d and
f (i.e. hold with probability1).

As it happens, we can solve the equations by turning the
alphabetA into a commutative group(A,⊕), and the by letting
g1(b, d) = b ⊕ d, g2(α, β, γ) = α 	 γ, g3(b, f) = b ⊕ f ,
g4(α, β) = α	β, g5(d, f) = d andg6(α, β) = β	α. Thus the
players have a (cooperative) guessing strategy (in fact a linear
guessing strategy) ensuring that all players are simultaneously
able to guess their own message correctly with the probability
(1

s
)3. One strategy is given by:
aguess = b ⊕ d
bguess = a 	 e
cguess = b ⊕ f
dguess = a 	 b
eguess = d
fguess = c 	 b

ea c

cea

ba c

b ca

b=a−e c=b+fa=b+d

(ii)(i)

(iv)(iii)

d=a−b e=d f=−b+c

a−b
a−b −b+c

a+c+e

b d

b d f

c+e
c

f

b+d
d f

figure 6

Figure 6 (i)-(iii) shows how this strategy corresponds nat-
urally to Network Codings in the three information flow
problems in figure 5(i)-(iii). Figure 6 (iv) shows the strategy
as a guessing strategy.

IV. PROOF OFTHEOREMS

Before we prove Theorem 1 and Theorem 2, we need a few
formal definitions of information networks. As already pointed
out, the translation between information networks and directed
graphs is most clean if we represent information networks
such that all computations (Network Codings) are placed in
the nodes of the network. An information flow networkN
(in circuit representation) is an acyclic directed graph with all
source nodes (input nodes) having in-degree0 and all receiver
nodes (output nodes) having out-degree0. Each source node
is associated with a variable from a setΓvar of variables. In
the receiver node there is a demand assigned i.e. variable from
Γvar. In each nodew that is not a source, a function symbol
fw is assigned. The function symbols in the network are all
distinct.

Messages are assumed to belong to an alphabetA. Some-
times we assume thatA has an additional structure (e.g. a
group, a ring or a vector space). Each outgoing edge from a
node transmits the same signal (function value of node).

An actual information flow is given by letting each function
symbolf represent an actual functioñf : Ad → A whered is
the number of incoming edges to the node that is associated
the function symbolf . The information flow is a solution if
the functions compose such that each demand is always met.

We let Cmultiple−unicast denote the class of information
networks N for which n messagesm1, m2, . . . , mn ∈ A
(selected from some alphabetA) have to be sent from input
(source) nodesi1, i2, . . . , in to output nodeso1, o2, . . . , on.

Let Cmultiple−unicast be an information network in this
model. We define the graphGN by identifying nodei1 with
o1, nodei2 with o2, . . . and nodeij with oj in general for
j = 1, 2, . . . , n.

Theorem(1) follows directly from Theorem(2). Hence, to
prove both theorems it suffices to prove Theorem(2).

Proof of Theorem(2): Let N be an information network
with input (source) nodesi1, i2, . . . , in, output (receiver) nodes
o1, o2, . . . , on and inner nodesn1, n2, . . . , nm. The networkN
is acyclic so we can assume that we have ordered the nodes
as i1 < i2 < . . . < in < n1 < n2 < . . . < nm < o1 <
o2 < . . . < on such that any edge(i, j) in N has i < j in
the ordering. Any selection of coding functions (whether they
form a solution or not) can then be written as

z1 = f1(x1, x2, . . . , xn)
z2 = f2(x1, x2, . . . , xn, z1)
z3 = f3(x1, x2, . . . , xn, z1, z2)
............
zm = fm(x1, x2, . . . , xn, z1, z2, . . . , zm−1)
xo

1 = g1(x1, x2, . . . , xn, z1, z2, . . . , zm)
xo

2 = g2(x1, x2, . . . , xn, z1, z2, . . . , zm)
.............
xo

n = gn(x1, x2, . . . , xn, z1, z2, . . . , zm)
where for j = 1, 2, . . . , n xj is the variable denoting the

value assigned to the input nodeij , zj is the variable denoting

7

the value computed by the inner nodenj , andxo
j is the variable

denoting the output value computed by the nodeoj .
Next, consider the corresponding graphGN we get by

identifying nodesir andor for r = 1, 2, . . . , n. We consider
the guessing strategy given by the functions above i.e. the
strategy given by:

zguess
1 = f1(x

real
1 , xreal

2 , . . . , xreal
n)

zguess
2 = f2(x

real
1 , xreal

2 , . . . , xreal
n , zreal

1)
zguess
3 = f3(x

real
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2)

.............
zguess

m = fm(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m−1)
xguess

1 = g1(x
real
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m)
xguess

2 = g2(x
real
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m)
............
xguess

n = gn(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m).
Here xreal

j (or zreal
j) denotes the actual value of the die

associated to that node, whilexguess
j (or zguess

j) denotes the
value being ‘guessed’ by the node.

Conversely each guessing strategy forGN can be written
on this form. To see this we use the fact that the restriction
of GN to the nodes that correspond to the inner nodes in
N forms an acyclic graph (sinceN is acyclic). Thus the
equations can be viewed as an attempt to solve the information
flow problem N . To prove Theorem(2) we show that the
guessing strategy succeeds with probability(1

s
)m if and only

if the corresponding information flow functions solves the
information network problem. This boils down to showing
that the probability that all inner nodes guess their own dice
values correctly is(1

s
)m (Lemma 3). Assume that we have

shown this (lemma 3). Then the probability that all players
guess correctly is at most as large as the probability all players
corresponding to inner nodesn1, n2, . . . , nm guess correctly.
Thus all the players guess simultaneously their own dice values
correctly with probability≤ (1

s
)m. Equality holds if and

only if the conditional probability (under the assumption that
zguess

j = zreal
j for j = 1, 2, 3, . . . , m) that xguess

j = xreal
j for

j = 1, 2, . . . , n is 1. This happens if and only if the functions
f1, f2, . . . , fm, g1, . . . , gn form a solution to the information
flow problem. So to complete the proof of Theorem(2) it
suffices to show:

Lemma (3):
For any set of functionsf1, f2, . . . , fm and
g1, g2, . . . , gn the probability that players
n1, n2, . . . , nm (i.e. players in nodes corresponding
to inner nodes in the information network) guess
their own dice values correctly is(1

s
)m (i.e.

independent of the chosen guessing functions).

Proof: We are asking for the probabilityzguess
j = zreal

j for
j = 1, 2, . . . , m wherezguess

1 = f1(x
real
1 , xreal

2 , . . . , xreal
n)

zguess
2 = f2(x

real
1 , xreal

2 , . . . , xreal
n , zreal

1)
zguess
3 = f3(x

real
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2)

.............
zguess

m = fm(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m−1).
The number of choices ofxreal

1 , xreal
2 , . . . , xreal

n and
zreal
1 , zreal

2 , . . . , zreal
m is sn+m. We want to count the number

of "successful" choices for whichzguess
j = zreal

j for j =
1, 2, . . . , m. That is, the number of choices for which:

zreal
1 = f1(x

real
1 , xreal

2 , . . . , xreal
n)

zreal
2 = f2(x

real
1 , xreal

2 , . . . , xreal
n , zreal

1)
zreal
3 = f3(x

real
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2)

.............
zreal

m = fm(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m−1)
But for each choice ofxreal

1 , xreal
2 , . . . , xreal

n there is
exactly one choice of zreal

1 , zreal
2 , . . . , zreal

m . Thus the
number of successful choices issn. The probability is
number of successful choices

number of choices = sn

sn+m = 1
sm . ♣

Informally we can explain the validity of Lemma 3 by
noticing that the restriction of the graphGN to the set of nodes
that corresponds to inner nodes ofN forms an acyclic graph,
and as we already noticed in an acyclic graph, the players
cannot do any better than uncoordinated guessing.

A. Standard representation

There are a few slightly different ways to represent flow in
information networks. In the previous section we considered
the Circuit Representation. We call the standard (and "correct")
way of representing information flows in Network Coding for
the Standard Representation. If we use the Standard Rep-
resentation we get slightly different versions of Theorem(1)
and Theorem(2). The actual theorems can be stated the same
(verbatim)! The Theorems are modified to fit the standard
representation in the way the graphGN is defined.

An information NetworkN is a directed acyclic multi-
graph. Each source node has in-degree0, while each receiver
node has out-degree0. Associated with each source node is a
variable from a setΓvar of variables. Each outgoing edge is
associated with a distinct function symbol with an argument
for each incoming edge. Each receiver node has a list of
demands which is a subset of variables fromΓvar. In the
receiver node there is assigned a function symbol for each
demand. All function symbols are distinct.

Messages are assumed to belong to an alphabetA. An
actual flow (using Network Coding) is given by letting each
function symbolf represent an actual functioñf : Ad → A
whered is the number of incoming edges to the node that is
associated with the function symbolf . The flow (that might
utilise Network Coding) is a solution if the functions compose
such that each demand is given by the functional expression
of the involved terms.

We let Cmultiple−unicast denote the class of information
networks N for which n messagesm1, m2, . . . , mn ∈ A
(selected from some alphabetA) has to be sent from source
nodesi1, i2, . . . , in to output nodeso1, o2, . . . , on.

We convert a given information networkN ∈
Cmultiple−unicast to a directed graphGN as follows:

Step 1: For each variable or function symbol assigned to an
edge or a node we introduce a node in the new graphGN .

Step 2: We identify nodesii with o1, i2 with o2, . . . andij
with oj in general forj = 1, 2, . . . , n.

With this translation ofN to GN Theorem(1) and Theo-
rem(2) remain valid (verbatim).

V. GENERAL RESULTS FOR INFORMATION NETWORKS

Theorem 1 and Theorem 2 only apply for information
networksN ∈ Cmultiple−unicast . In this section we generalise

8

the results so they essentially cover all (!) instantaneous
information networks. As a price of the increase in generality
we lose some of the elegance of Theorem 1. The proof of
Theorem 4 (that generalises Theorem 1) provides us, in fact,
with a new (and different) proof of Theorem 1.

Let N be a information network, and letA be an (finite)
alphabet withs elements. For a selection of fixed network
functionsf̄ , we define the networksN ’s global success rate
p(N, s, f̄) of a specific network coding flow (with coding
functions f̄) as the probability thatall outputs produce the
required outputs if all inputs are selected randomly with inde-
pendent probability distribution. Themaximal global success
ratep(N, s) of the information flow networkN (over alphabet
of size s) is defined as the supremum of all global success
ratesp(N, s, f̄) that can be achieved by any choice of coding
functions f̄ . Since the set of functions̄f (for a fixed finite
alphabetA) is finite, p(N, s) is the maximal global success
rate p(N, s, f̄) for some specific choice of coding functions
f̄ .

Assume thatN is an information network over an alphabet
A with s elements. Assume thatN hasn source nodes (input
nodes), and that each of these is required by at least one
receiver node (output node).

Definition:
We define thesource transmission bandwidthk =
k(N, s) of the information networkN (over alphabet
of sizes) ask(N, s) = logs(p(N, s)) + n.

The notion is motivated by the Theorem(4) below, and can
be viewed as a generalisation of the guessing number of a
graph.

Notice, that a network has source transmission bandwidthk
if all output nodes can simultaneously calculate their required
messages with probabilitysk higher than what can be achieved
by the "channel free" network. An information networkN is
solvable if and only ifp(N, s) = 1 i.e. if and only ifk(N, s) =
logs(p(N, s))+n = n. It other words, an information network
N with n sources (that sendn distinct source messages that
each message is required at one or more receiver nodes), has
source transmission bandwidthk(N, s) = n if and only if it
is solvable (in the sense of network coding) over an alphabet
of sizes.

For each (directed) graphG = (V, E) we want to define
an information flow problemNG = (W, F) with |V | source
nodes (input nodes) and|V | receiver nodes (output nodes).
Expressed slightly informally, we defineNG by splitting each
node w ∈ V into two nodeswinput and woutput (thus the
vertex setW consists of two copies ofV). For each edge
(w, v) ∈ E we add an edge(winput, voutput) ∈ F . Let
NG = (W, F) denote the flow problem that appears through
this transformation where each output nodevoutput requires
the message assigned tovinput. Notice that the information
network NG is usually very far from being solvable, since
most source (input) nodes have no path to its corresponding
receiver (output) node.

Source nodes

Receiver nodes

Inner node

Source nodes

Receiver nodes

output

input

Inner node

Source nodes

Receiver nodes

Lower part
of inner node

Upper part
of inner node

w is "split"

w

w

winput

outputw

w

figure 7

Observation:
Let G be a directed graph. ThenNG ∈
Cmultiple−unicast and G has guessing numberk =
k(G, s) if and only if NG has source transmission
bandwidthk = k(NG, s).
For each p ∈ [0, 1] there is a one-to-one cor-
respondence between guessing strategiesf̄ in the
GuessingGame(G, s) that achieve success with prob-
ability p and information flowsf̄ in NG that have
global success ratep.

The Observation is too trivial to deserve to be called a theorem.
It is, however, quite interesting since it shows (together with
the remark in the end of this section) that the notion of source
transmission bandwidth generalises the guessing number ofa
directed graph.

We now introduce a simple move we call "split". Given an
information networkN = (V, E) (with E being a multiset)
the move "split" can be applied to any inner nodew ∈ V in
N (a node is an inner node if it is not a source or a receiver
node). The move "split" copies the inner nodew into two
nodeswinput andwoutput. In other words, the move converts
the vertex setV to the setV ′ = V ∪ {winput, woutput} \
{w} containing all points inV but with two copies (winput

andwoutput) of w. For each outgoing edge(w, u) ∈ E from
w we introduce an edge(winput, u) ∈ E′ (with the same
multiplicity as(w, u)). For each incoming edge(u, w) ∈ V we
introduce an edge(u, winput) ∈ E′ (with the same multiplicity
as (w, u)).

The information networkN ′ = (V ′, E′) has as source
(input) nodes all source (input) nodes inV together with
{winput}. The set of receiver (output) nodes consists of the
receiver (output) nodes inV together with{woutput}. We
associate a new variablez with the nodewinput and node
woutput is associated with the demandsz. All other nodes

9

keep their demands.
In figure 7, we see how the split move can be applied.

We say that the information networkN ′ appears from the
information networkN by a "reverse split move", ifN appears
from N ′ using a split move.

The split move always results in an information network
that has no solution (since there is no path from the source
nodewinput to the receiver nodewoutput).

The next Theorem can be considered as a generalisation of
Theorem 1 and Theorem 2.

Theorem(4):
Let N and N ′ be two information networks that
appear from each other by a sequence of split and
inverse split moves (in any order). The networksN
andN ′ have the same source transmission bandwidth
(i.e. k(N, s) = k(N ′, s))
More specifically, letN be an information flow
network, letA be an alphabet with|A| = s letters,
and assume that̄f is a selection of coding func-
tions over this alphabet. Assume thatN has source
messagesx1, x2, . . . , xr (they might be transmitted
from more than one input edge). Assume that the
coding functions have a global success ratep =
p(N, s, f̄) ∈ [0, 1]. Let N ′ be any information
network that appears fromN by application of the
split move. ThenN ′ with the coding functionsf̄)
has global success ratep(N ′, s, f̄) = p

s
.

In general if N has global success ratep (over
alphabetA) any networkN ′ that appears fromN by
application ofr split moves andt reverse split moves
(in any order) has global success ratep × st−r.

Proof: The first part follows from the more detailed second
part, since each application of the split rule increases thevalue
of n (the number of input nodes by one), and each application
of the inverse split rule decreases the value ofn by one.

Assume that the information networkN = (V, E) has
global success ratep = p(N, s, f̄) ∈ [0, 1] with respect to
the coding functionsf̄ . Let w ∈ V be any inner node in
N . Replacew with (split w into) two nodeswinput and
woutput as already explained. The incoming coding function
to node woutput is the same function as the inner coding
function to nodew in the networkN . Each outgoing coding
function of winput is the same as each outgoing function
for node w. The networkN ′ has got a new input node.
Let us calculate the probabilityp(N ′, s, f̄) that all output
nodes produce the correct outputs. The probability that node
woutput produces the correct output is exactly1

s
. Assume

now woutput = winput. The conditional probability (i.e. the
probability givenzoutput = zinput) that all output nodes in
the networkN produce the correct output isp = p(N, s, f̄).
But, then the probability that all output nodes inN ′ produce
the correct output is exactlyp

s
.

The second part of the theorem follows from the first part.
Assume thatf̄ is a selection of coding functions such that
p(N, s, f̄) = p(N, s) (the alphabet is finite so there are only
finitely many functionsf̄ , and thus there exist functions that
achieve the maximum valuep(N, s)). We already showed that

p(N ′, s, f̄) = p(N,s,̄)
s

. We claim thatp(N ′, s) = p(N ′, s, f̄).
Assume thatp(N ′, s, ḡ) > p(N ′, s, f̄). But thenp(N, s, ḡ) =
s × p(N ′, s, ḡ) > s × p(N ′, s, f̄) = p(N, s, f̄) which contra-
dicts the assumption that̄f was an optimal coding function
for the information networkN (over alphabet of sizes). ♣
Remark: Notice that ifN ′ can be derived fromN by a split
move the graphsGN and GN ′ are identical. Thus starting
with any N ∈ Cmultiple−unicast any sequence of split and
inverse split moves leaveGN unchanged. This shows thatGN

is invariant under split and unsplit moves onN .
If N ∈ Cmultiple−unicast hasn input nodes,n output nodes,

andm inner nodes we can ‘split’ all innerm nodes producing
a bi-parte graphN̂ with n + m input nodes andn + m
output nodes. Notice that there is a one-to-one correspondance
between information flows inN̂ and guessing strategies in
GN (actually, from a mathematical perspecitive the two are
essentially identical since the coding functions in the output
nodes are the guessing functions inGN).

Now assume that then + m input values ofN̂ are chosen
randomly (and independently). The probabilityp(N̂ , s) that all
outputs are correct is identical to the probabilityp that each
player in the guessing gameGN correctly guesses his/her own
die value.

But, now according to Theorem 4,p(N̂ , s) = (1
s
)mp(N, s)

(sinceN̂ appear fromN usingm split moves). In other words
N is solvable (i.e.p(N, s) = 1) if and only if p(N̂ , s) = (1

s
)m.

This happens if and only if the players in the guessing game
played onGN (=G

N̂
≡ N̂) have a strategy that succedes

with probability (1
s
)m. Thus the guessing number ofGN is

(n+m)−m = n. This shows that Theorem 4 implies Theorem
1 (and that the proof of Theorem 4 together with the remark
provide an alternative proof of Theorem 1).

VI. U TILISING PUBLIC INFORMATION .

A. Another Game

Consider the directed graph in figure 8(i) (introduced in 4
(iv)). Each node has to derive their own message. This is, of
course, impossible and we know that the best the players can
hope for (if they use a suitable coordinated guessing strategy)
is that they are all correct ons3 distinct inputs (out of the
s6 different inputs). If the players have access tos3 public
messages and these are carefully chosen, it is possible for the
players (through a cooperative strategy) to ensure that each
player can derive his/her own message.

message
Public

a b c

d e f

(i)

(ii)

a b c d e f

fedcba

Public

channel

figure 8

10

If, for example, the valuesa	 b	 d ∈ A, c	 b	 f ∈ A as
well ase	 d ∈ A are common knowledge (broadcast through
public messages) each node can derive its own message (since
a = (a	b	d)⊕b⊕d, b = (e	d)	 (a	b	d)⊕ (a	e), c =
(c	 b	 f)⊕ b⊕ f , d = (a	 b)⊕ (a	 b	 d), e = (e	 d)⊕ d
andf = (c 	 b) 	 (c 	 b 	 f)).

Another equivalent way of stating this is to consider the
biparte flow problem in figure 8 (ii), with public channel of
bandwidth3. Notice that figure 8 (i) and figure 8 (ii) are dif-
ferent representations of the problems that are mathematically
equivalent.

Are the solutions (public messagesa	b	d ∈ A, c	b	f ∈
A as well ase	d ∈ A) in figure 8 (i) and figure 8 (ii) optimal?
Is it possible to send fewer thans3 message through the public
channel (and still have all players being able to deduce their
own message)? From the analysis of the guessing game in
figure 4 (iv) we know that the probability that the players in
nodesa, c and e guess their own messages is independent
(for any guessing strategy) and thus nodesa, c and e guess
correctly their own message with probability(1

s
)3. We claim

that if nodea, c ande in general are able to derive their own
message they must have access to at leasts3 distinct messages
in the public channel. To see this assume that it were possible
for the players in figure 8 (i) to deduce their own messages
from a public channel that sends< s3. The players could then
all agree to guessas if the public channel is broadcasting a
specific messagem they agreed on in advance. Since there
are less thans3 public messages there is a messagem that is
broadcast with probability> (1

s
)3). This contradicts the fact

that the players (especially the players in nodesa, c and c)
cannot do better than(1

s
)3. Thus the solutions in figure 8 (i)

(and in figure 8 (ii)) are optimal.
Let G = (V, E) be a directed graph. Assume like before

that each node is being assigned a messagex randomly chosen
from a fixed finite alphabetA containings = |A| elements.
Like in the guessing game each node transmit their message
(dice value) along all outgoing edges. In other words each
nodej know the messages (dice values) of exactly all nodes
i with (i, j) ∈ E.

The task of the players is to deduce their own message. This
is of course impossible (unless the graph is reflexive) sincein
general the players have no direct access to their own message
(dice values). The task of the players is to cooperate and agree
on a protocol and a behaviour of a public channel that ensure
that all players are always able to derive their own messages.

Definition:
Let G = (V, E) be a directed graph and letA
denote an alphabet withs letters. LetP be a finite
set of public messages. Consider the following game
PublicChannelGame(G, A, P). The game is played
as follows. Each nodej ∈ V is assigned a message
xj ∈ A. A public messagep = p(x1, x2, . . . , xn) ∈
P (given by a functionp : An → P) is broadcast to
all nodes. Each nodej have access to the message
p ∈ P as well asxi for eachi with (i, j) ∈ E. In
the game each playerj needs to deduce the content
of their own messagexj .
Each player (node)v ∈ {1, 2, . . . , n} send their

message to each playerw ∈ {1, 2, . . . , n} with
(v, w) ∈ E. Or in other words each nodew receive
messages from a setAw := {v ∈ V : (v, w) ∈ E}.
The task is do design the functionp(x1, x2, . . . , xn)
such that each player always (i.e. for any choice
of x1, x2, . . . , xn ∈ A) can deduce their own mes-
sage. If this is possible, we say that the game
PublicChannelGame(G, A, P) has a solution.

Definition:
A directed graph G = (V, E) has (general)
linear guessing numberk = ks if the game
PublicChannelGame(G, A, P) has solution for some
A with |A| = s and withP = s|V |−k.

This definition anticipates Theorem 6.
Now consider, for example, the case of figure 3(iii) with

4 players holding messages (dice values)x1, x2, x3 and x4.
In this case each player is able to calculate their own dice
value if, for example,x1 ⊕ x4, x2 ⊕ x4 andx3 ⊕ x4 modulos
were know public information. [To see this, notice that node1
receivesx4 from which it can calculatex1 = (x1 ⊕ x4)	 x4,
nodei = 2, 3 receivesxi−1 from which it can calculatexi =
(xi ⊕ x4) 	 (xi−1 ⊕ x4) ⊕ xi−1. Finally, node 4 receivesx3

from which it can calculatex4 = (x3 ⊕ x4) 	 x3].
For any information networkN we can apply the split move

until all inner nodes have been spilt. In this caseN becomes
a biparte graphBN with no inner nodes. Notice thatBN is
uniquely determined byN .

x x3 x5 x6

x1 x2 x3
x4

p

x6

x4x21

x5 figure 9
This example and the example in figure 4 (iv), suggests that

it is always is possible to replace the guessing part of guessing
game, and instead let all players have access to a suitable
public channel of information. We will show (corollary 10)
that this is possible for linear solutions (also sometimes called
matrix linear) for the guessing game, but never possible if only
non-linear solutions exists. Notice, that the following analysis
is only meaningful when the alphabet (i.e. the dice values)
can be organised as a vector spaceU (of dimensiond) over
a finite field F (with a numberq of elements being a prime
power). The number|U | of element ofU is given bys := qd.

Theorem(5):
Assume that the alphabetU is a vector space of
dimensiond over a finite fieldF with q elements
(i.e. q is a prime power). Then the following are
equivalent:
(1) The players have a linear guessing strategy in
GuessingGame(G, U) that succeed with probability
(1

qd)k

(2) G has linear guessing numberk = klin(G, qd).
(3) PublicChannelGame(G, U, Uk) has a solution

11

(possible non-linear).
(4) The Biparte information Flow problemBG

associated toG has a solution (overU and possible
non-linear) that uses a public channelP of band-
width k.
(5) The Biparte information Flow problem asso-
ciated toG has a linear solution over a field̃F of qd

elements, that uses a public channel of bandwidthk.
(6) The Biparte information Flow problem associ-
ated toG has a linear solution (over the vector space
U) that uses a public channel of bandwidthk.
(7) PublicChannelGame(G, U, Uk) has a linear
solution.

From this we get:

Theorem (6):
Assume that the alphabetU is a finite dimensional
vector space over a finite fieldF . The nodes in
a directed graphG can calculate their messages
(selected fromU) if they have access to a public
channel of bandwidth≤ k if and only if the (special)
linear guessing number ofG is ≥ |V | − k.

Theorem (6) explain the terminologygeneral linear guess-
ing number. In the case where the alphabet is a vector-space
the linear guessing number (in sense of linear maps) agree
with the general linear guessing number. The two notions
of linear guessing number agree when they are both defined.
The general linear guessing number is, however, defined for
all s ∈ {2, 3, 4, . . . , }, while the linear guessing number only
is defined whens is a prime power (since a finite dimensional
vector space always has a number of elements being a prime
power).

B. Proof of theorem 5

First notice that(1) and(2) are equivalent (by definition).
We claim:

Lemma 7:
(1) implies (3):

Proof: We are given a graphG = (V, E) and we consider
GuessingGame(G, U, Uk), for U being a vector space of
dimensiond over a fieldF with q elements (q being a prime
power). The numberk is given by (1). We assume that the
players have a linear guessing strategy, i.e. a strategy with all
functionsfw : U rω → U are linear (i.e. given by arωd × d
matrix with entries inF). Further more we assume this linear
guessing strategy make it possible for the players to guess
correctly all their own dice values with probability(1

qd)k.

Consider Ũ := U |V |, the linear subspace of vectors
(v1, v2, . . . , v|V |) ∈ U |V | with vj ∈ U for j = 1, 2, . . . , |V |.
Let W ⊆ Ũ denote the linear subspace of dice values for
which the players all successfully guess their own dice value
(while using the linear guessing strategy we assume exists).
Since the strategy is successful with probability(1

q
)dk and

since the number of points iñU is qd|V | the number of points
in W is qd|V |−dk. SinceW is a linear subspace withqd|V |−kd

points over a field ofq elements its vector space dimension is
d|V | − dk (thusdk must be an integer).

For each vectoru ∈ Ũ we consider the linear "side" space
u + W . Let u0(= 0), u1, u2, . . . , ul denote a maximal family
of vectors withW = u0 + W, u1 + W, u2 + W, . . . , ul + W
all being disjoint. It follows thatl = qdk −1 i.e. that there are
qdk disjoint side spaces ofW and that

⋃l
j=0(uj + W) = U .

We can now convert this into a solution to
PublicChannelGame(G, U, Uk). We do this by broadcasting a
public message as follows: Assume each node inV has been
assigned a value fromU . The information of all dice values
are contained in a vectoru ∈ Ũ . There exist exactly one
index j ∈ {0, 1, 2, . . . , l} such thatu ∈ uj + W . Broadcast
the indexj ∈ {0, 1, 2, . . . , qdk − 1} by selecting a bijection
from {0, 1, . . . , qdk − 1} onto U (this is possible sinceU
contains exactlyqdk points). Now each node can calculate
its own message by correcting their guess (they would have
made had they played the Guessing Game) by the suitable
projection ofuj.

This shows that the game PublicChannelGame(G, U, Uk)
has a solution (possible non-linear) with the public message
being selected from the setUk public messages.♣

In this construction, the public channel broadcasts different
messages for each indexj ∈ {0, 1, 2, . . . , l}. In general, this
map is not linear. We will show that any non-linear strategy
can be turned into a linear strategy.

Lemma 8:
(4) implies (5)

Before we prove this implication we make a few general obser-
vations and definitions. Assume the bi-parte flow problem in
(5) (in theorem 5) has a solution with the public channel broad-
castingp1(x1, x2, . . . xn), . . . pw(x1, x2, . . . , xn). Sincepj :
An → A andA is a field, each functionpj can be expressed
as a polynomialpj ∈ A[x1, x2, . . . xn]. Each output node
oj receivep1, p2, . . . pw ∈ A as well asxj1 , xj2 , . . . , xjv

∈
A. The task of output nodeoj is to calculatexj ∈ A.
For any polynomialq ∈ A[x1, x2, . . . xn] we let L(q) ∈
A[x1, x2, . . . xn] denote the sum of all monomials (with the
original coefficients) ofq that only contains one variable
(e.g. xj , xj3, or xj7). In other wordsL(q) consists ofq
where the constant term as well as all monomials containing
more than one variable have been removed. If for example
q = 5x1x3 − 7x1x2 + 3x1 − 5x2 + 1, thenL(q) = 3x1 − 5x2.

In the following lemma we assume thatU (= A) is
structured as a finite field (containingqd-elements).

Lemma(9):
A biparte information flow problemB has a so-
lution with public information given by polynomi-
als p1, p2, . . . pw ∈ A[x1, x2, . . . xn] then B has
a solution with public information given by linear
expressionsl1, l2, . . . lw ∈ A[x1, x2, . . . , xn].

Remark: It is instructive to notice some of the reasons why
in general non-linear flows cannot be eliminated from infor-
mation networks. In a general network a non-linear solution
might for example involve that two nodes send messages
(x + y) and (y + z) to a noder where their product(x +
y)(y + z) = xy + xz + yz + y2 = xy + xz + yz + y is
being calculated. Removing mixed monomials would lead to
L(x + y) = x + y andL(y + z) = y + z to be sent to noder

12

whereL((x + y)(y + z)) = y2 must be calculated. Since it is
not possible to derivey2 (or y) from x+y andy+z the process
of removing monomials with mixed variables fails in general.
The networks in [18] and [8] show that certain flow problems
only have non-linear solutions. For such networks any attempt
of removing non-linear terms (not just using local procedures)
will fail. The point of lemma 9 is that the networkB together
with any public channel is structured in such a fashion that
allows us to remove mixed terms and then replace the resulting
function with linear functions. Information networks in which
only two messages are transmitted provide another case where
linearisation is always possible [9].

Proof of lemma(9): Assume that we are given a biparte
flow problem B that have a solution with public informa-
tion given by polynomialsp1, p2, . . . pw ∈ A[x1, x2, . . . xn].
Assume that in this solution the output nodeso1, o2, . . . , on

have assigned coding functionsf1, f2, . . . , fn. Assume the
underlying alphabetA hasq elements (q is a prime power).
Then we can organiseA as a field. Each functionf : Ar →
A (where A is a field) can be expresed as a polynomial
p ∈ A[x1, x2, . . . , xr]. Thus without loss of generality we
can assume that the functionsf1, f2, . . . , fn are polynomials
in A[x1, x2, . . . , xn, z1, z2, . . . , zw]. Since output nodeoj re-
quiresxj for eachj ∈ {1, 2, . . . , n}, the polynomial equation

fj(x1, x2, . . . , xn, p1, p2, . . . , pw) = xj

Let f̃j(x1, x2, . . . , xn, z1, z2, . . . , zw) =
Lfj(x1, x2, . . . , xn, z1, z2, . . . , zw) and letlj(x1, x2, . . . , xn).
The polynomials f̃j and lj have no mixed terms. In
general for polynomialsq, p L(p + q) = L(p) + L(q) and
L(p1, p2, . . . , ps) = L(L(p1)L(p2) . . . L(ps)). From this it
is not hard to show that̃fj(x1, x2, . . . , xn, l1, . . . , lw) = xj .
In other words if we apply the operatorL that removes all
monomials with two or more distinct variables the public
information then becomesL(p1), L(p2), . . . L(pw). These
functions can be realised (since there are no restrictions
on the public channel and all functionsAn → Aw can be
calculated). Using the same argument we can remove all
mixed terms and insure that each output nodeoj receive a
function f̃j of its inputs (the input from input nodes as well
as from the public channel). Since each of the equations
f̃j(x1, x2, . . . , xn, l1, . . . , lw) = xj hold for j = 1, 2, . . . , n
B has a solution with public information given by the linear
expressionsl1, l2, . . . lw ∈ A[x1, x2, . . . , xn] This completes
the proof of lemma(9).♣

Now is it easy to prove Theorem(5). We have shown(1) →
(3) (Lemma 7) , as well as(4) → (5) (Lemma 8).

The implication(5) → (6) follows from the fact that a linear
mapf : F̃ r → F̃ is a (matrix) linear map fromU r → U for
any vectorspace overF whereF is a subfield ofF̃ .

The implications(6) → (7) → (1) as well as(3) ↔ (4) are
all almost trivial and are left as easy exercises for the reader.
This completes the proof of Theorem (5). Theorem (6) follows
as an easy corollary.

VII. SOME COROLLARIES

In general the guessing game GuessingGame(G, s) might
only have non-linear optimal guessing strategies. When this

happensG has linear guessing numberklin that is strictly
smaller thanG’s guessing numberk. We have the following
characterisation:

Corollary(10):
Let G = (V, E) be a graph and letU be a fi-
nite vector space. The linear guessing numberklin

of G over U is smaller or equal to the guessing
number k of G. Equality holds if and only if
PublicChannelGame(G, U, U |V |−k)) is solvable.

We have seen that the problem of solving information
network flow problems (of classCmultiple−unicast) can be
restated to that of calculating the guessing number of a graph.
The linear guessing number of a graph is an important concept.
We have the following version of Theorem 1 (that could -with
minor modifications - also be proved as Theorem 1).

Corollary(11):
The information flow problem N ∈
Cmultiple−unicast with n input/output nodes
has a linear solution (i.e. a solution within the "wave
paradigm”) over an alphabet of sizes if and only
if GN has its linear guessing numberk(G, s) ≥ n
(which happens if and only ifk(G, s) = n).

VIII. A LGEBRAIC CALCULATIONS OF LINEAR GUESSING

NUMBERS

Consider a directed graphG = (V, E). In this section we
show that the linear guessing number (over a field) has an
algebraic definition.

Let M = (mij)i,j be an × n 0/1-matrix and letA be a
finite field. Then we defineCA(M) to be the class ofn × n
matricesM ′ = (m′

ij)i,j with entries in the fieldA for which
m′

ij = 0 whenevermij = 0. Let I denote then × n identity
matrix and letµ(M) := n − minM ′∈CA(M)rank(I + M ′).
Notice thatµ(M) ∈ {0, 1, 2, . . . , n}.

Theorem 12:
Let G be a (directed) graph withn nodes and
incidence matrix MG. Let A be a finite field.
Then the graphG has linear guessing numberk
(over the fieldA) if and only if µ(GN) := n −
minM ′∈CA(MG)rank(I + M ′) = k.

Proof: AssumeG has linear guessing numberk. According
the Theorem (5)G has linear guessing numberk if and only
if the PublicChannelGame(G, A, Ak) has a linear solution
S with a public channel of bandwidthk. We say an edge
(v1, v2) ∈ E in G is active (with respect to the solutionS)
if the message inv1 affects the guessing function inv2. Let
E′ ⊆ E consists of all active edges inG. Let G′ = (V, E′)
be the subgraph ofG that consists of all active edges inG.
For each active edge we assign a valueα ∈ A\ {0}. Consider
a nodew ∈ V such that(v1, w), (v2, w), . . . , (vd, w) are all
active incoming edges with assigned valuesα1, α2, . . . , αd ∈
A \ {0}. The (linear) signal being send to nodew is s =
α1mv1

+ α2mv2
+ . . . + αdmvd

i.e. the waited sum of all
incoming signals, as well as the signals that are send from the
public channel. Since nodew requires messagemw the public
channel nust send a message from which the messages+mw

(i.e.α1mv1
+ α2mv2

+ . . . + αdmvd
+ mw) can be derived.

13

Next assume that the rank of
ref (G′) is k for some G′ ⊆ G. Let
l1(x1, x2, . . . xn), l2(x1, x2, . . . xn), . . . lk(x1, x2, . . . xn)
denote thek linearly independent rows ofref (G′). Send
these signals as public messages. Letw be an arbitrary
node. The node receive a signalmv1

+ mv2
+ . . . + mvr

from the channels inG′. The node w need to derive
mw so it suffice to show that the nodew can derive
mv1

+ mv2
+ . . . + mvd

+ xw from the public messages.
But, the row mv1

+ mv2
+ . . . + mvd

+ mw appears in
ref (G′) and thus it belong to the span of thek vectors
l1(x1, x2, . . . xn), l2(x1, x2, . . . xn), . . . lk(x1, x2, . . . xn)
that are send through the public channel.♣

For a graphG let Ref(G) denote the reflexive closure of
G. Let rank(G) denote the rank over the field{0, 1} of the
incident matrix ofG.

Theorem(13):
Assume the alphabetA = {0, 1} only con-
tains two elements. LetG be a graph. Then
PublicChannelGame(G, {0, 1}, {0, 1}k) has a solu-
tion if and only if

k ≥ minG′⊆Grank(Ref(G′))

IX. M ORE GAMES

SupposeN ∈ Cmultiple−unicasts is an information network
where some nodes have in-degree> 2. For each noden with
in-degreed > 2 we can replace the incomingd edges with a
tree withd leaves and a root inn.

Theoretically this replacement restricts the power of the
information network since not all functionsf : Ad → A can
be written as a composition of(d−1) functionsgj : A2 → A,
with j = 1, 2, . . . , d − 1.

Let Sd denote the class ofd-ary functionsf : Ad → A that
can be written as a composition ofd − 1, 2-ary functions.

Given a directed graphG = (V, E) and assume that each
node with in-degreed can only compute functions that belong
to Sd. How does this affect the guessing number of the graph?
How does it affect the set of solutions?

The network in figure 2 corresponds to a type of games that
can be described as follows:

• PublicChannelGameVariant(G, s): As before let G =
(V, E) be a graph on a vertex setV = {1, 2, . . . , n}
of persons. The game is played byn players. Each
player is assigned a message selected from some alphabet
{1, 2, . . . , s}. Each personw ∈ {1, 2, . . . , n} receivethe
function value(a value in {1, 2, . . . , s}) from the set
Aw = {v ∈ V : (v, w) ∈ E} ⊆ V. Each player also
have access to a public information channelp. How many
messages should the public channelp be able to broadcast
for all players to be able to deduce there own message?
Problem 3 in section II corresponded to the case where
G is the complete graph onn nodes.

As we already pointed out there exists graphsG for which
the dice guessing game only can achieve maximal probability,
if the players uses non-linear functions.

We will show (and this will follow as a corollary of
Theorem(16)) that:

Theorem(14):
Assume that the public information is
given by a function p : An → A. Then
PublicChannelGameVariant(Kn, s) is played on
the complete graphKn has a solution if and only if
there exists a commutative group(A,⊕) structure
on the alphabetA and there existsn permutations
π1, π2, . . . , πn ∈ SA of elements inA such that the
public channel broadcast

p(x1, x2, . . . , xn) = π1x1 ⊕ π2x2 ⊕ . . . ⊕ πnxn

Roughly, Theorem(14) states that the set of solutions consists
of all the “obvious” solutions (wherep(x1, x2,xn) =
x1 ⊕x2 ⊕ . . .⊕xnfor a commutative group), together with all
“encryptions”π : A → A of these.

X. ON THE POWER OFNETWORK CODING

In this section we show that the advantage of (linear)
Network Coding over any method that does not allows "in-
terference" is as high as one could possible have hoped
for. Consider the information networksN in figure 10. The
network corresponds to the Guessing Game on the complete
graphKn.

x1 x2 x3
...... xn

x1 x2 x3
...... xn

Public "Channel"

replaced by

many channels
in serial.

figure 10

Theorem (15):
For eachn there is a networkN with n input nodes
and n output nodes such that the through-put isn
times higher than any method that does not allow
interference.
For any n ∈ N and for anyε > 0 there exists a
networkN(n, ε) such that the through-put divided by
the number of active channel using Network Coding,
is n − ε times as high as the maximal through-
put divided by the number of active channels using
methods that does not allow interference.
If each inner node is required to have in-degree (and
out-degree)≥ 2 the result remains valid.

Proof: For eachn ≥ 2 (and eachε > 0) we base the con-
struction on the network in figure 10. Assume that the public
channel consists ofm channels in serial. In any “solution”
(operating at rate1

n
) that does not allow mixture of data

packets all messages must go through thesem channels. Thus
the number of active channels ism+2. In the Network Coding
solution (operating at rate1) all n(n− 1) + (m + 2) channels
are active. We can choosem such thatn× ((m+2)

n(n−1)+(m+2)) >
n − ε. For thism the through-put divided by the number of

14

active channel (in the Network Coding solution) isn−ε times
as high as the maximal through-put divided by the number of
active channels using methods that does not allow interference.

x1 x2 x3
...... xn

x1 x2 x3
...... xn

Public "Channel"

replaced by

many channels
in serial.

figure 11
The serial construction in this proof might be considered

unacceptable. It might be argued that the cost of using the
serial channels ought to count as1 rather thanm. To overcome
this criticism we can modify the serial channels as indicated in
figure 11 and selectm so each path through the public channel
still must involve≥ m active channels (m chosen as before).
.♣

XI. A NALYSIS OF SPECIFIC NETWORKS

Consider the information networkN(n) sketched in figure
12. Notice that the information networkN(3) is displayed
in figure 2. Notice also thatN(2) essentially is the butterfly
network (see figure 1a).

The networks N(n) corresponds to
PublicChannelGameVariant(Kn, s) played on the complete
graphKn.

x1 x3x2 xn

x1 x3
xn

l1 l32l ln

x
2

Public

channel

p(x1,x2,...,xn)

fig. 12
Let us consider this network again. The networkN(3) is

quite natural to study and I thank Ken Zeger to have pointed
out that the very same network was considered in [10] with
essentially the same conclusion (Theorem 16). The network
N(3) (as well as the networksN(n) in general) can serve as
building blocks for various constructions in Network Coding
[10].

The three output nodes receive the messages
l1(x2, x3) ∈ A, l2(x1, x3) ∈ A and l3(x1, x2) ∈ A.
Besides this, each output node has access to public message
p = p(x1, x2, x3) ∈ A. We notice that a solution to the
flow problem associated withN3 consists of six functions
l1, l2, l3, r1, r2, r3 : A × A → A as well as one functionp :
A×A×A → A such thatx1 = r1(p(x1, x2, x3), l1(x2, x3)),
x2 = r2(p(x1, x2, x3), l2(x1, x3)) and x3 =
r3(p(x1, x2, x3), l3(x1, x2)).

The solution we already considered can be achieved (within
the framework of linear Network Coding) as follows: Let
(A,⊕) be an abelian group, letp(x1, x2, x3) := x1⊕x2⊕x3,
let li(x, y) := x⊕y for i = 1, 2, 3 and letri(x, y) := x	y for
i = 1, 2, 3. We leave to the reader to check that this defines a
solution to the flow problem associated with the networkN3.

Actually, for each abelian group(A,⊕) and for any three
permutationsπ1, π2, π3 : A → A the network has a solution
with p(x1, x2, x3) := π1x1 ⊕ π2x2 ⊕ π3x3, l1(x2, x3) :=
π2x2 ⊕ π3x3, l2(x1, x3) := π1x1 ⊕ π3x3 and l3(x1, x2) :=
π1x1 ⊕ π2x2. We will show that all solutions are essentially
of this form. More generally letNn denote the network:

The networkNn hasn input nodes. These transmit mes-
sagesx1, x2, . . . xn ∈ A. The messagesx1, x2, . . . xn are
independent so we assume that the network cannot exploit
hidden coherence in the data. The networkNn hasn internal
nodesl1, l2, . . . ln. The nodelj is connected to each input
nodeexceptthe node that transmits messagexj . The network
hasn output nodes that are required to receive the messages
x1, x2, . . . xn−1 andxn (one message for each output node).
The node required to receivexj is connected tolj as well as
to the public channelp. The public channel broadcasts one
messagep = p(x1, x2, . . . xn) ∈ A to all output nodes. First
we notice that:

Observation:
The networkNn has a solution over any (finite)
alphabetA. Using routing only one message can
be transmitted at a time. Thus the through-put using
Network coding isn-times as large as the through-
put using any type of routing method that does not
allow interference. This is optimal since any network
problem with n input nodes that is solvable using
network coding can be solved using routing if the
bandwidth is increased by a factorn.

The next Theorem gives a complete classification of the set of
solutions (all utilising Network coding) to the networkNn.

Theorem(16):
Consider the network flow problemNn over a finite
alphabetA. Assumen ≥ 3. Let p : An → A be
any function. The network flow problemNn has a
solution with public informationp if and only if
for some group composition⊕ on A that makes
(A,⊕) an abelian group, there existn permutations
π1, π2, . . . πn : A → A such thatp(x1, x2, . . . xn) =
⊕n

j=1πjxj .

Proof: In general if Theorem(16) have been shown forNr

for somer ≥ 3 the Theorem is also valid for eachNs with
s ≥ r. Thus to prove the theorem it suffice to show that the
theorem is valid forN3.

Let p : A3 → A be defined byp(x1, x2, x3). Assume that
the network has a solution when the public signal is given by
p. The functionp : A3 → A must be ‘latin’ (i.e.fa,b(z) :=
p(a, b, z), ga,c(y) := p(a, y, c) and hb,c(x) := p(x, b, c) for
eacha, b, c ∈ A define bijectionsfa,b, ga,c, hb,c : A → A).
Notice thatp defines a latin cube of order|A|. The functions
l1.l2, l3 : A2 → A are also forced to be latin i.e. they define
three latin squares each of order|A|. In order to proceed we

15

need to prove a number of lemmas.

Lemma(17):
Denote one element inA by 1. The networkN3 has
a solution for some functionsl1, l2, l3 : A2 → A
if and only the networkN3 has a solution when
l1(x2, x3) := p(1, x2, x3), l2(x1, x3) := p(x1, 1, x3)
and l3(x1, x2) := p(x1, x2, 1).

Proof of lemma(17): We introduce a new and interesting
type of argument that might be useful when reasoning about
‘latin’ network flow in general. For each output node we
draw a triangle with a coding function assigned to each
corner. The triangle corresponding to the output node that
required outputx1 has assignedp(x1, x2, x3), l1(x2, x3) and
x1 to its corners. Ifp and l1 are functions that produce a
solution to the network flow problem,x1 ∈ A can uniquely
be calculated fromp(x1, x2, x3) ∈ A and l1(x2, x3) ∈ A (i.e.
there exists a (latin) functionf : A2 → A such thatx1 =
f(p(x1, x2, x3), l1(x2, x3))). Notice, that any coding function
assigned to one of the corners can be calculated uniquely from
the two other functions. More specificallyl1(x2, x3) ∈ A
is uniquely determined byx1 ∈ A and p(x1, x2, x3) ∈ A.
And the valuep(x1, x2, x3) is uniquely determined byx1

and l1(x2, x3). We say that a triangle with a coding function
assigned to each corner is ‘latin’ if each of the three coding
functions can be calculated from the two other functions. For
any solution of the network flow problemN3 each of the
following three triangles are latin:

p(x1,x2,x3)

x1 x2

l 2(x1,x3)

l 3(x1,x2)

x3

l1(x2 ,x3) p(x1 ,x2 ,x3)

p(x1 ,x2 ,x3)

(i) (ii)

(iii) figure 13
Letting x1 = 1 in triangle (i) we notice thatp(1, x2, x3) can

be calculated froml1(x2, x3) and conversely we notice that
l1(x2, x3) can be calculated fromp(1, x2, x3). Thus we can
replace the functionl1(x2, x3) with the functionl1(x2, x3) :=
p(1, x2, x3). Similarly, by lettingx2 = 1 in triangle (ii) and
letting x3 = 1 in triangle (iii) we obtain a solution with
l2(x1, x3) := p(x1, 1, x3) and l3(x1, x2) := p(x1, x2, 1). This
completes the proof of lemma(3).

Lemma(18):
Assume that there is a solution to the flow problem
N3 with public information given byp : A3 →
A. Then the latin functionp(x1, x2, x3) determines
(uniquely) two latin functions (i.e two latin squares)
l : A2 → A (l stands for ‘left’) andr : A2 → A (r
stands for ‘right’) defined by the two equations:

• p(1, l(x1, x2), x3) = p(x1, x2, x3)
• p(x1, r(x2, x3), 1) = p(x1, x2, x3)

Proof of lemma(18): Certainly (since p is latin), there
exist uniquely defined functionsl′, r′ : A3 → A
such that p(1, l′(x1, x2, x3), x3) = p(x1, x2, x3) and

p(x1, r
′(x1, x2, x3), 1) = p(x1, x2, x3). To show lemma (4)

it suffices to show thatl′ is independent ofx3 and thatr′ is
independent ofx1. Consider the two latin triangles:

p(x1,x2,x3) p(x1,x2,1) p(x1,x2,x3) p(1,x2,x3)

x1x3

(iv) (v) figure 14
In each triangle (iv) and (v) each coding function is

uniquely determined by the two other coding functions
in the triangle. Thus there existsf, g : A2 → A
such that p(x1, x2, x3) = f(p(x1, x2, 1), x3) and
such that p(x1, x2, x3) = g(x1, p(1, x2, x3)). Let
l(x1, x2) := l′(x1, x2, 1) and let r(x2, x3) := r′(1, x2, x3)
and notice that p(x1, x2, 1) = p(1, l(x1, x2), 1) and
p(1, x2, x3) = p(1, r(x2, x3), 1). But then p(x1, x2, x3) =
f(p(x1, x2, 1), x3) = f(p(1, l(x1.x2), 1), x3) =
p(1, l(x1, x2), x3) and p(x1, x2, x3) = g(x1, p(1, x2, x3)) =
g(x1, p(1, r(x2, x3), 1) = p(x1, r(x2, x3), 1) . Thus l and
r satisfies the same equations that uniquely determined
l′ and r′ and thus l′(x1, x2, x3) = l(x1, x2) and
r′(x1, x2, x3) = r(x2, x3). This completes the proof of
lemma(4).

Lemma(19):
Assume thatp : A3 → A has a solution and
that p(x1, x2, x3) = p(1, l(x1, x2), x3) and assume
that p(x1, x2, x3) = p(x1, r(x2, x3), 1). Then the
functions l, r : A2 → A satisfy the equation
r(l(x1, x2), x3) = l(x1, r(x2, x3)).

Proof: Since p is latin and p(x1, x2, x3) =
p(1, r(l(x1, x2), x3), 1) = p(1, l(x1, r(x2, x3)), 1).

The next three lemma are straight forward to prove.

Lemma(20):
Assume p(x1, x2, x3) allows a solution and
that l(x1, x2) and r(x2, x3) are defined such
that p(1, l(x1, x2), x3) = p(x1, x2, x3) and
p(x1, r(x2, x3), 1) = p(x1, x2, x3). Then for
each pair π1, π3 : A → A of permutations
p′(x1, x2, x3) := p(π1x1, x2, π3x3) allows
a solution and l′(x1, x2) = l(π1x1, x2) and
r′(x2, x3) = r(x2, π3x3) satisfies the equations
p′(1, l′(x1, x2), x3) = p′(x1, x2, x3) and
p′(x1, r

′(x2, x3), 1) = p′(x1, x2, x3).
Lemma(21):

There exists permutationsπ1, π3 : A → A such that
l(π1x1, 1) = x1 and such thatr(1, π3x3) = x3.

Lemma(22):
If p(x1, x2, x3) is a solution, there is another solution
p′(x1, x2, x3) = p(π1x1, x2, π3x3) such that the
two functionsl′(x1, x2) and r′(x2, x3) that satisfy
the equationsp′(1, l′(x1, x2), x3) = p′(x1, x2, x3),
p′(x1, r

′(x2, x3), 1) = p′(x1, x2, x3) as well as
l′(x1, 1) = x1 andr′(1, x3) = x3.

Without loss of generality (possibly after having replaced
x1 and x3 by π1x1 and π3x3) we can assume that we
are given a latin functionp(x1, x2, x3) and two latin func-

16

tions l(x1, x2) and r(x2, x3) that satisfiesl(x1, 1) = x1,
r(1, x3) = x3, and havel(x1, r(x2, x3)) = r(l(x1, x2), x3)
for all x1, x2, x3 ∈ A. But, thenr(x1, x3) = r(l(x1, 1), x3) =
l(x1, r(1, x3)) = l(x1, x3) and thusl = r. But then l is
transitive i.e.l(x1, l(x2, x3)) = l(l(x1, x2), x3). Furthermore
since l(x, 1) = x and l(1, x) = r(l, x) = x we notice thatl
defines a group operation onA. Thus we have shown that for
any functionp(x1, x2, x3) that allows a solution to the network
flow problemN3, there exist permutationsπ1, π3 : A → A
such that if we letp′(x1, x2, x3) := p(π1x1, x2, π3x3) then
there is a group structure∗ on A such thatp′(x1, x2, x3) =
p′(1, x1 ∗ x2 ∗ x3, 1) for all x1, x2, x3. But then there is a
permutationπ : A → A such that if we letp′′(x1, x2, x3) =
π(p′(x1, x2, x3)) then p′′(1, b, 1) = b for all b ∈ A. Notice,
that p′′(x1, x2, x3) = π(p′(x1, x2, x3)) = π(p′(1, x1 ∗ x2 ∗
x3, 1)) = p′′(1, x1 ∗ x2 ∗ x3, 1) = x1 ∗ x2 ∗ x3. This shows:

Lemma(23):
Let p : A3 → A be the public information in the net-
work N3. Then, if there is a solution to the network
flow problemN3, there exists a group composition∗
on A such that ‘essentially’p(x1, x2, x3) = x1 ∗x2 ∗
x3 (modulo the application of suitable permutations
to x1, x3 andp (or x2)).

Lemma(24):
Let (A, ∗) be a group and letp(x1, x2, x3) := x1 ∗
x2 ∗ x3. Then the flow problemN3 has a solution if
and only if (A, ∗) is a commutative group.

Proof: Assume thatp(x1, x2, x3) := x1 ∗ x2 ∗ x3 (or just
x1x2x3 for short) allows a solution. Then we have the fol-
lowing ‘derivation’ from latin triangle with coding functions
p(a, b, c) = abc, p(a, 1, c) = ac andb.

abc ac

b

c−1bc ac

b figure 15
Figure 7, represents the fact thatb can be uniquely deter-

mined from abc and ac. But, then givenc−1bc and ac we
can calculateabc = (ac)c−1bc and thus we can determine
b. Now ac can take any value (depending ona) and thus
this equation is useless in calculatingb. This shows thatb
is uniquely determined fromc−1bc. The expressionc−1bc
must be independent ofc and thusc−1bc = 1−1b1 = b. But,
then bc = cb for all a, b, c ∈ A which shows that the group
(A, ∗) must be a commutative group. The converse is rather
obvious, since if(A, ∗) is an abelian group andp(x1, x2, x3) =
x1x2x3, we get a solution by lettingl1(x1, x2) := x1x2,
l2(x1, x3) = x1x3 and l3(x1, x2) = x1x2. This completes the
proof of lemma(10) which in turn clearly implies the theorem
for N3. This in turn easily implies the validity of theorem(2)
for generalNn with n ≥ 3. ♣

A. Constructions using the networksN(n) as building blocks

A very natural construction is seen in figure 16. The network
M(3) appear by adding a new node toN(3) that requiresx3

and receive its input froml1, l2 and l3. The idea behind the
construction ofM(3) is to ensure that the network only has
solutions for certain alphabet sizes.

p p pp

x1 x2 x3
x1 x2 x3

r: x1 r: x2 r: x3
r: x3 figure 16

The new node is added toN(3) to ensure that the node only
can reconstructx3 by essentially computingx3 from x3 ⊕x3.
Heuristically, nodel1 receivesx2⊕x3, nodel2 receivesx1⊕x3

and l3 receivesx1 ⊕ x2. From these three messages the new
node needs to derive the messagex3. The natural way to do
this is to calculate2x3 = (x1 ⊕ x3)⊕ (x1 ⊕ x3)	 (x1 ⊕ x2).
Now, intuitively, whis is only possible if the abelian group
(A,⊕) has the linear mapl : A → A given by l(a) = 2a
being invertible. This holds if and only if|A| is odd (for a
slightly more detailed explanation of this see [10]).

x1 x3x2 xn

1 x3
xn

l1 l32l ln

x
2

Public

channel

p(x1,x2,...,xn)

x
r: xn fig. 17

Next, consider the networkM(n) in figure 17. Again,
heuristically nodelj receivep 	 xj and thus the canonical
way of calculatingxn is to calculate(n − 1)xn = (p 	
x1) ⊕ (p 	 x2) ⊕ . . . (p − 	xn−1) 	 (n − 2)(p 	 xn). This
calculations can always be carried out if the mapl : A → A
given by l(a) = (n − 1)a is invertible. Intuitively, if there
is no such invertible mapl we would (keeping Theorem
16 in mind) not expect that there are any solutions to the
corresponding information flow problem. We will now prove
this more formally:

Lemma(25):
The information flow problemM(n) has a solution
(that might utilise network coding) over alphabetA
of size s if and only if the linear mapl : A →
A given by l(a) = (n − 1)a is invertible for some
abelian group(A,⊕) of sizes.

Proof: According to Theorem(16) the public channel broad-
cast the messagep = π1(x1)⊕π2(x2)⊕ . . .⊕πn(xn). Without
loss of generality we can assume that the public information
is given byp = x1 ⊕ x2 ⊕ . . .⊕ xn (since we can replace the
input variablesxj with x′

j := π−1
j (xj) and then the output

requirementxj can be achieved if and only ifx′
j can be

achieved). First notice thatxj , lj and p form a latin triangle
in any solution. Sincexj , p 	 xj and p also forms a latin
triangle and sincelj and p 	 xj are independent ofxj we
notice thatlj and p 	 xj can be computed from each other.
Thus, any solution to the information flow problemM(n) can

17

without loss of generality be assumed to havelj := p	xj for
j = 1, 2, . . . , n.

First, assume thatl is not invertible over the group(A,⊕).
Then, existsa ∈ A with a 6= 0 with (n − 1)a = 0. Consider,
the input messagesx1 = x2 = . . . = xn = a and compare
them with the input messagesx1 = x2 = . . . = xn = 0. In
the both casesl1 = l2 = . . . = ln = 0 and thus, sincea 6= 0,
the new added node is in general not able to recoverxn (since
it cannot in general distinguisha from 0). This argument is
essentially, identical to an argument in [10].

Conversely, assumel is invertible for some ablean group
(A,⊕) of sizes. Let p = x1⊕x2⊕. . .⊕xn and letlj = p	xj

for j = 1, 2, . . . , n. Notice that(n − 1)xn = (p 	 x1) ⊕ (p 	
x2) ⊕ . . . ⊕ (p 	 xn−1) 	 (n − 2)(p 	 xn). If l is invertible
xn = l−1((n − 1)xn) can be recovered.
♣
From this we get:
Theorem(26):

The information networkM(n) (for n ≥ 3) has a
solution over an alphabetA if and only if n− 1 and
|A| are relative prime (i.e.gcd(n − 1, |A|) = 1).

B. A neat application of Theorem 16

Consider the information networkL in figure 18. This
network is related (but non-isomorphic to) the networkN1
constructed in [8].

a b c

p p p p

a b c

r: a

r: c r: b r: a

E

lc
lb la

figure 18
We show:
Theorem(27):

The information flow problemL has a solution over
an alphabetA if and only |A| is a power of two
(i.e.|A| = 2k for somek ∈ N).

Proof: First notice that nodeE that requiresa has no access
to the public channel. Thus the message passing throughlb
cannot depend on messageb. But then nodelc receives a
message that is a function ofa and b, lb receives a message
that is a function ofa andc, while nodela receives a message
that is a function ofb andc. Thus, we can apply Theorem 16,
and deduce that there exists an abelian group structure(A,⊕)
on A such that the public channel broadcast a message on
the formp = πa(a) ⊕ πb(b) ⊕ πc(c) whereπa, πb andπc are
permutations (encryptions!!) of the messagesa, b andc.

Without loss of generality we can assumep = a ⊕ b ⊕ c
since otherwise we can simply “encrypt” the messagesa, b and

c with a′ := (πa)−1(a), b′ := (πb)
−1(b) and c′ := (πc)

−1(c)
and then “decrypt” the messagesa, b and c in the receiver
nodes. This point needs a bit care since the decryption might
not be a linear function (see comment belov).

Anyway first assume thatlc = a ⊕ b and lb = a ⊕ c and
la = b ⊕ c. Thus lb = a ⊕ c can be derived fromlc = a ⊕ b
and la = b ⊕ c.

a+b b+c

a+c

a−c b+c

a+c

figure 19
As indicated in figure 19, we then infer thata ⊕ c always

can be derived froma 	 c and b ⊕ c. But the messageb + c
depend on (is “infected” by)b and so we conclude thata⊕ c
always can be derived froma	 c alone. But then there exists
f : A → A such thata⊕c = f(a	c) (Had we only considered
encoded signals we would have reached the same conclusion
since a suitable decoding could be build into the definition of
f).

If we let c = 0 we notice thata = f(a) and sof is the
identity map. Thusa ⊕ c = a 	 c i.e. 2c = 0. From this we
conclude that the only possibly solutions can appear if(A,⊕)
is an abelean group for which all elements have order2. This
is only possible if|A| = 2k for somek.

On the other hand for any alphabetA with 2k elements the
network L has a (linear) solution given bylc = a ⊕ b, lb =
a ⊕ c, la = b ⊕ c andp = a ⊕ b ⊕ c. ♣

XII. M ULTIPLE UNICAST NETWORKS

I will finish the paper by introducing a simple construction
that allows us to convert the results in the previous sectionto
similar results for multiple unicast networks.

Consider the information networkC in figure 20 (i). The
source nodes send messagesx1, x2, . . . , xn to a collection of
receiver nodes. Assume two receiver nodes requiresx1. To be
a multiple-unicast network we require that different receiver
nodes require different messages.

(i)

x1 xn
x2

x3

x1 x1 x2
xn

x2
x3

xn

xnx1 x2

(ii)

y

x1
y

B

A

18

figure 20
In figure 20 (ii) we have modified the information network

in figure 20 (i). New source and receiver nodes sending and
receivingy have been added. Notice that any solution must
have messagex1 enter at nodeA and have messagex1 leaving
the network at pointB. This ensures that the networkC′ in
figure 20 (ii) has a solution over an alphabetA if and only if C
has a solution overA. Actually,we notice (using the analysis
of the butterfly network in [19]) that the set of solutions to
the information flow problemC′ is a direct product of the set
of latin squares of order|A| and the set of solutions toC.
Thus, the class of functions needed to solveC is essentially
the same as the class of functions needed to solveC′.

Theorem(28):
There exists a multiple unicast information flow
problem U , that is solvable, but have no linear
solutions (over any vector space).

Proof: In [8] the authors construct an information flow prob-
lem Nnonlin that is solvable, but have no linear solutions over
any alphabet organised as a vector space. Using the idea just
introduced we can modify this problem to a multiple unicast
problemU that has a set of solutions that is a direct product
of the set of latin squares of order|A| and the set of solutions
to Nnonlin. ♣

Theorem(29):
There exists a directed graphG with guessing num-
ber k that can only be achieved if the players uses
non-linear guessing strategies.
There exists a directed graphG with guessing num-
ber kG(s) depending ons. Furthermore there exists
k such thatkG(s) < k for infinitely many values of
s while kG(s) = k for all remaining values ofs (also
infinitely many).

Proof: The first part of the theorem follows by combining
Theorem 2 and Theorem 28. The second part follows by
combining Theorem 2 with Theorem 27 (or Theorem 26) and
the general conversion method♣.

Open Question:
Is the guessing number of an undirected graph always
an integer?

XIII. A CKNOWLEDGEMENTS

To end I would like to thank Raymond Yeung, Yun Sun,
Taoyang Wu and Ken Zeger for their valuable feedback and
general comments on an earlier draft version of this paper.

REFERENCES

[1] S. Medard M.-Koetter R. Acedanski, S. Deb. How good is random linear
coding based distribued network storage? To appear.

[2] A Aggarwal and J S Vitter. The input/output complexity ofsorting
and related problems.Communications of the ACM, 31(9):1116–1126,
September 1988.

[3] R Ahlswede, N Cai, Li, and R Yeung. An algebraic approach to network
coding. page 104, 2001.

[4] K.R. Bhattad, K. Narayanan. Weakly secure network coding. To appear.
[5] N. Cai and R.W. Yeung. Network coding and error correction. In ITW

2002 Bangalore, pages 119–122, 2002.
[6] J. Cannons, R Dougherty, C Freiling, and K Zeger. Networkrouting

capacity. IEEE/ACM TRANSACTIONS ON NETWORKING, October
2004. Submitted.

[7] Deb, Choute, Medard, and Koetter. Data harvesting: A random coding
approach to rapid dissemination and efficient storage of data. In
INFOCOM, 2005. Submitted.

[8] R Dougherty, C Freiling, and K Zeger. Insufficiency of linear coding in
network information flow. 2004. To appear.

[9] R Dougherty, C Freiling, and K Zeger. Linearity and solvability
in multicast networks. IEEE Transactions on Information Theory,
50(10):2243–2256, October 2004.

[10] R Dougherty, C Freiling, and K Zeger. Unachievability of network cod-
ing capacity.IEEE Transactions on Information Theory and IEEE/ACM
Transactions on Networking (joint issue), 2005. submitted March 2005.

[11] C. Fragouli and E Soljanin. A connection between network coding and
convolutional codes. InIEEE International Conference on Communica-
tions, 2004.

[12] T Ho, M Medard, and R Koetter. An information theoretic view of
network management. InProoceeding of the 2003 IEEE Infocom.

[13] R Koetter and M Medard. An algebraic approach to networkcoding. In
Proocedings of the 2001 IEEE International Symposium on Information
Theory.

[14] R Koetter and M Medard. Beyond routing: An algebraic approach to
network coding. InProceedings of the 2002 IEEE Infocom, 2002.

[15] Li, Yeung, and Cai. Linear network codes.IEEE Trans. v.49,371-381.
[16] K. Rabaey J Petrovic, D. Ramchandran. Overcomming untuned radios

in wireless networks with network coding. To appear.
[17] L.G. Pippenger, N. Valiant. Shifting graphs and their applications.

JACM, 23:423–432, 1976.
[18] S. Riis. Linear versus non-linear boolean functions innetwork flow. In

Proceeding of CISS 2004.
[19] S. Riis and R Ahlswede. Problems in network coding and error

correcting codes. NetCod 2005.
[20] M Thorup and S Riis. Personal communication. March 1997.
[21] L. Valiant. Graph-theoretic arguments in low-level complexity.
[22] L Valiant. On non-linear lower bounds in computationalcomplexity. In

Proc. 7th ACM Symp. on Theory of Computing, pages 45–53, 1975.
[23] L. Valiant. Why is boolean circuit complexity theory difficult? In M.S.

Pattorson, editor,Springer Lecture Series, pages 84–94, 1992.
[24] C. Boudec J-Y. Widmer, J. Fragouli. Low-complexity energy-efficient

broadcasting in wireless ad-hoc networks using network coding. To
appear.

[25] Wu, Chou, and Kung. Information exchange in wireless networks with
network coding and physical-layer broadcast. Technical Report MSR-
TR-2004-78, Microsoft Technical Report, Aug. 2004.

[26] Yeung and Zhang. Distributed source coding for satellite communica-
tions. IEEE Trans. Inform. Theory, (IT-45):1111–1120, 1999.

