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Introduction

In most of todays information networks messages are
send in packets of information that is not modified
or mixed with the content of other packets during
transmission. This holds on macro level (e.g. the in-
ternet, wireless communications) as well as on micro
level (e.g. communication within processors, commu-
nication between a processor and external devises).

Today messages in wireless communication are sent
in a manner where each active communication chan-
nel carries exactly one “conversation”. This approach
can be improved considerably by a cleverly designed
but sometimes rather complicated channel sharing
scheme (network coding). The approach is very new
and is still in its pioneering phase. Worldwide only a
handful of papers in network coding were published
year 2001 or before, 8 papers in 2002, 23 papers in
2003 and over 25 papers already in the first half of
2004; (according to the database developed by R.
Koetters). The first conference on Network Coding
and applications is scheduled for Trento, Italy April
2005. Research into network coding is growing fast,
and Microsoft, IBM and other companies have re-
search teams who are researching this new field. A
few American universities (Princeton, MIT, Caltech
and Berkeley) have also established research groups
in network coding.

The holy grail in network coding is to plan and or-
ganise (in an automated fashion) network flow (that
is allowed to utilise network coding) in a feasible man-
ner. With a few recent exceptions [5] most current
research does not yet address this difficult problem.

The main contribution of this paper is to provide
new links between Network Coding and combina-
torics. In this paper we will elaborate on some re-

marks in [8, 9]. We will show that the task of design-
ing efficient strategies for information network flow
(network coding) is closely linked to designing error
correcting codes. This link is surprising since it ap-
pears even in networks where transmission mistakes
never happen! Recall that traditionally error cor-
rection, is mainly used to reconstruct messages that
have been scrambled due to unknown (random) er-
rors. Thus error correcting codes can be used to solve
network flow problems even in a setting where errors
are assumed to be insignificant or irrelevant.

It should be pointed out that the idea of link-
ing Network Coding and Error Correcting Codes (in
a context where networks NOT are assumed to be
error-free) was already presented in [4]. In this paper
Cai and Yeung obtained network generalisations of
the Haming bound, the Gilbert-Varshamov bound,
as well as the singleton bound for classical error-
correcting codes.

The basic idea and its link to work by
Euler.

The aim of the section is to illustrate some of the
basic ideas in network coding. To illustrate the rich-
ness of these ideas we will show that solving the flow
problem for certain simple networks, mathematically
is equivalent to a problem that puzzled Euler and
was first solved fully almost 200 years later! First
consider the following network:
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The task is to send the message = from the upper
left node, to the lower right node labelled r : z (indi-
cating that the node is required to receive ) as well
as to send the message y from the upper right node,
to the lower left node labelled r : y. Suppose the mes-
sages belong to a finite alphabet A = {1,2,... n}. If
the two messages are sent as in ordinary routing (as
used on the world wide web or in an ordinary wire-
less network) there is a dead lock along the middle
channel where message x and message y will clash.
If instead we send the message sz, = S(z,y) € A
through the middle channel, it is not hard to show
that the problem is solvable if and only if the matrix
(si,)ijea forms a latin square (recall that a latin
square of order n is an n X m matrix with entries
1,2,...n appearing exactly once in each row and in
each column). We can now link this observation to
work by Euler! Consider the following extension of
the previous flow problem:
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Now the task is to send the message x and the mes-
sage y to each of the five nodes at the bottom. To do
this each of the matrices {s, ,} and {t; ,} must, ac-
cording to the previous observation, be latin squares.
However, the latin squares must also be orthogonal
i.e. if we are given the value s € A of the entry s, ,
and the value ¢t € A of the entry ¢, ,, the values of =
and y must be uniquely determined. Thus, we notice
that:

Proposition: There is a one-to-one correspondence
between solutions to the flow problem in figure
2 with alphabet A and pairs of orthogonal latin
squares of order |A|.

The problem of deciding when there exist such two
orthogonal latin squares has an interesting history.
Euler knew (c.1780) that there was no orthogonal
Latin square of order 2 and he knew constructions
when n is odd or divisible by 4. Based on much
experimentation, Euler conjectured that orthogonal
Latin squares did not exist for orders of the form
4k + 2,k =0,1,2,.... In 1901, Gaston Tarry proved
(by exhaustive enumeration of the possible cases)
that there are no pairs of orthogonal Latin squares
of order 6 - adding evidence to Euler’s conjecture.
However, in 1959, Parker, Bose and Shrikhande were
able to construct two orthogonal latin squares of or-
der 10 and provided a construction for the remaining
even values of n that are not divisible by 4 (of course,
excepting n = 2 and n = 6). From this it follows:

Proposition (corollary to the solution to Euler’s
question): The flow problem in figure 2 has a
solution if and only if the underlying alphabet
does not have 2 or 6 elements.

The flow problem in figure 2 might be considered
somewhat ‘unnatural’ however the link to orthogonal
latin squares is also valid for very natural families
of networks. The multi-cast problem N3 4o defined
below has for example recently been shown to be es-
sentially equivalent to Eulers question [6].



Network coding and its links to error
correcting codes

The task of constructing orthogonal latin squares can

be seen as a special case of constructing error correct-

ing codes. There is, for example, a one-to-one corre-

spondence between orthogonal latin squares of order

|A| and (4, |A|?,3) |Al|-ary error correcting codes. !
Next consider the flow problem:
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Assume each channel in this multi-cast network has
the capacity to carry one message (pr. unit time).
Assume that the task is to send two messages z,y € A
from the top nodes to each of the 10 bottom nodes.
It can be shown that this flow problem has a solu-
tion over the alphabet A if and only if there exist
an (5,|A|?,4) |Al-ary error correcting code. It has
been shown that there exit such codes if and only
if |[A] ¢ {2,3,6}. The flow-problem in figure 3 can
be generalised. Consider a network Ny , s such that
it consists of k messages r1,xs,... T € A, that are
transmitted from a source node. The source node is
connected to a layer containing r nodes, and for each

s element subset of r (there are < Z = (T_T—S'),T,
such) we have a terminal node. The task is to insure
that each message z1,22,...,2; € A can be recon-
structed in each of the terminal nodes. Notice the
previous network flow problem is N2 5 2. In general

it can be shown [9, 8]:

1Recall that a (n, c, d) r-ary error correcting code C' consists
of ¢ words of length n over an alphabet containing r letters.
The number d is the minimal hamming distance between dis-
tinct words w,w’ € C.

Proposition 2: The flow problem Ny, s has a solu-
tion if and only if there exists an (r, |A|*, r—s+1)
|Al-ary error correcting code.

Essentially, there is a one-to-one correspondence be-
tween solutions to the network flow problem Nj 49
and (4,4,3) 2-ary error correcting codes, i.e. orthog-
onal latin squares. Thus despite of the fact that the
flow problem in figure 2 has a topology very different
from the N 4 2 problem, the two problems essentially
have the same solutions!

Next, consider the famous Nordstrom-Robinson
code: This code is now known to be the unique binary
code of length 16, minimal distance 6 containing 256
words. The point about this code is that it is non-
linear, and is the only (16,256, 6) 2-ary code. Again
we can apply the proposition to show that the multi-
cast problem Ny 1611 has no linear solution over the
field Fy, while it has a non-linear solution. Are phe-
nomena like this just rare isolated incidences or much
more widespread?

The classical theory for error correcting
needs extensions

The previous sections indicate how it is possible to
recast and translate network flow problems into the
theory of error correcting codes (thus, using standard
results in coding theory, it is possible to translate
network flow problems into questions about finite ge-
ometries). Another approach is outlined in [7].

In [9, 8] the first example with only non-linear so-
lutions was constructed. Unlike other examples this
construction seems to go beyond standard results in
error correcting codes. The construction is based on
the following network:

2The fact that known bounds on maximum distance sepa-
rable codes can be applied to bound the required alphabet-size
was shown in [10]
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The network N in figure 4 has the curious property
(like Ng 16,11) that the maximal through-put can only
be achieved if non-linear flows are allowed (i.e non-
linear boolean functions are needed in any solution).
Furthermore it turns out that any code optimising
the vertical flows has to be a “minimal distance code”
[9, 8]. This phenomena is interesting since a minimal
distance code from a traditional perspective is very
bad (as it essentially has the worst possible error cor-
recting capability).

This example is one of a collection of examples that
suggests that the classical theory of error correcting
codes needs to be extended and developed in order to
serve as a basis for network coding. See also [3, 1, 2]
more results pointing in this direction.
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