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Abstract

We show that the asymptotic complexity of uniformly
generated (expressible in First-Order (FO) logic) proposi-
tional tautologies for the Nullstellensatz proof system (NS)
as well as for Polynomial Calculus, (PC) has four distinct
types of asymptotic behavior over fields of finite charac-
teristic. More precisely, based on some highly non-trivial
work by Krajicek, we show that for each prime p there
exists a function l(n) ∈ Ω(log(n)) for NS and l(n) ∈
Ω(log(log(n)) for PC, such that the propositional transla-
tion of any FO formula (that fails in all finite models), has
degree proof complexity over fields of characteristic p, that
behave in 4 distinct ways:

(i) The degree complexity is bound by a constant.
(ii) The degree complexity is at least l(n) for all values

of n.
(iii) The degree complexity is bound by a constant on an

infinite set S, and is at least l(n) on the complement
N \S. Furthermore, membership n ∈ S is for some k ∈ N
determined uniquely by the value of n modulo qk.

(iv) The degree complexity fluctuates between constant
and l(n) (and possibly beyond) in a very particular way.

We leave it as an open question whether the classification
remains valid for l(n) ∈ nΩ(1) or even for l(n) ∈ Ω(n).
Finally, we show that for any non-empty proper subset
A ⊆ {(i), (ii), (iii), (iv)} the decision problem of whether
a given input FO formula ψ has type belonging to A - is
undecidable.

1. Introduction

1.1 Weak propositional proof systems

A large number of problems in computer science includ-
ing verification, knowledge representation, planning and
automated theorem proving are linked to the following de-
cision problem: Given a propositional formula ψ in m

boolean variables as input, decide if the formula is a tautol-
ogy. Mathematically this problem is trivial since essentially
we can decide the question by exhaustively testing each of
the 2m possible 0/1 truth assignments. However, from a
practical computational point of view this is not feasible if
m is large, so it is important to find methods that are more
efficient than exhaustive search. In the case where the for-
mula ψ is a tautology we would like this to be verified by
some feasible and reliable procedure. This could be done,
for example, by providing a proof of ψ in a suitable proof
system. Such approach is, however, only feasible if there
exists a ‘short’ proof (or in general a short ’certificate’) that
proves (or in general ’witnesses’) the fact that Ψ is a tau-
tology. A key problem in propositional proof complexity
concerns this issue. The big open question is whether it is
in general possible to do better than exhaustive testing. Is
there a propositional proof system where, for example, it is
always possible to provide proofs (certificates) that contain
less than p(m) symbols for some fixed polynomial p?

Cook and Recknows [6] put forward a program (for
proving NP 6= co-NP) where the idea is to obtain super-
polynomial for stronger and stronger propositional proof
systems. Cook and Recknow noticed that showing NP
6= co-NP is equivalent to proving super polynomial lower
bounds for any propositional proof system (where the ax-
ioms and rules are given in a manner that can be computed
in Polynomial time).

Proof systems where proving super-polynomial lower
bounds seems to be well beoynd current techniques are of-
ten refered to a ”strong” propositional proof systems [12].
On the other hand propositional proof systems (like reso-
lution) for which super-polynomial (or exponential) lower
bounds are known - are referred to as ”weak” propositional
proof systems. Examples of strong propositional proof sys-
tems include proof systems like Natural deduction (tree-like
or dag-like), Gentzen’s system LK (with cuts) as well as the
so called Frege-proof systems.

Despite being inefficient for some classes of tautologies,
weak propositional proof systems play a very important role



in many areas of computer science. The resolution proof
system, for example, is quite a weak system, however many
theorem provers and algorithms are based on this proof sys-
tem (usually in the form of the Davis-Putnam algorithm).
The main reason for this success of weak proof systems
is that although strong propositional proof systems some-
times allow shorter proofs than the weak propositional sys-
tem, in general it seems to be computationally hard to find
these shorter proofs. In fact, in general, for some classes
of tautologies it might (asymptotically) be computationally
harder to find short proofs of the propositions in some given
strong system, than to find the proofs of the propositions in
a weak proof system.

Weak systems often allow us to get quite a clear idea
about what are sensible (and what are less sensible) proof
strategies. However, in many cases it seems very unclear
how one can algorithmically (in a feasible manner) utilise
the strength of the strong propositional system.

An important part of our motivation for studying weak
systems (especially after a good lower bound have already
been obtained for the system) is to understand - in as clear
terms as possible - the proof systems’ ability (or lack of
ability) to handle various general classes of tautologies.

1.2 Related results

In [13, 15] Krajicek initiated the study of how particu-
lar weak propositional proof systems are coping with uni-
form systems of tautologies (or unsatisfiable propositions).
In [16] Paris and Wilkie had already introduced a general
method of converting statements of Bounded Arithmetic
(and first oder logic) into propositional logic. This method
allows us to convert any first order (FO) predicate formula
ψ into a sequence ψn of propositional propositions. The
method of translation can be seen as a special case of the
translation methods discussed in [5], where various classes
of formula in logic are translated into a uniform sequence
of propositional logic. In the general translation each ΣB0
FO-formula η is translated into a sequence η[n] of propo-
sitional propositions. Our main result is not valid with this
general translation, that allows ”build-in” relation and func-
tions (i.e. has certain relations and function symbols that
play a special role in the translation). Informally, our trans-
lation can be viewed as similar to the ΣB0 -translation for FO
formula, but restricted to the case where there is no refer-
ence to any special symbols (of bounded arithmetic) that
are translated such that the indices 1, 2, . . . , n on the propo-
sition variables are interpreted as representing the natural
numbers 1, 2, . . . , n

Let Θ denote the class of FO formulae that have no fi-
nite models. Then the translation of each ψ ∈ Θ leads to
a sequence ψn of unsatisfiable proposition formulae. Infor-
mally, the proposition ψn states that ψ has no model of size

n.
For a given propositional refutation systemR, Krajicek’s

approach was to provide a general model theoretic criteria
that together with a general increasing function f : N → N
(e.g. a function of super polynomial growth rate), would in-
sure that any FO sentence ψ ∈ Θ that satisfies the model
theoretic criteria would lead to a sequence ψn of unsatisfi-
able propositions, that for n sufficiently large would require
anyR-refutation to have complexity at least f(n).

Maybe the most basic model theoretic principle is that a
given FO formula ψ ∈ Θ is valid in some infinite model. In
[20] Riis showed that the fact that ψn is unsatisfiable (rep-
resented as a statement expressed in undefined relational
symbols) cannot be proven in the system T 1

2 (α) of bounded
arithmetic if and only if ψ holds in some infinite model.

From a combinatorial perspective (disregarding certain
technical issues related to Bounded Arithmetic) the if-
direction was later improved by Krajicek [13], when he
showed that any FO-sentence ψ ∈ Θ that holds in some
infinite model, leads to a sequence ψn that requires expo-
nential size tree-like resolution refutations.

The pigeonhole principle is violated in some infinite
models, thus Krajicek’s criteria immediately made it pos-
sible to ”explain” why various versions of the pigeonehole
principle are hard for tree-resolution. For a fix field charac-
teristic, Krajicek showed in [15, 14] that if there is an infi-
nite model equipped with a suitable Euler structure (which
depends on the characteristic of the field) in which ψ is
valid, then ψn requires Nullstellensatz (NS) refutations of
degree Ω(log(n)) and requires Polynomial Calculus (PC)
refutations of degree Ω(log log(n)).

Informally Kraijcek’s criteria capture in some sense the
class of first order sentences that lead to such hard tau-
tologies with respect to the propositional system in focus.
This informal interpretation is reflected in Krajicek’s ter-
minology where he says that his model theoretic criterion
(different for different propositional proof systems) ”corre-
sponded” to the proof system. It should be emphasised that
in general the correspondences established by Krajicek are
not ”exact” (and were not claimed it to be so).

A related, but different approach was introduced by Riis
[21] suggesting that (weak) propositional proof systems in
general might have so-called complexity gaps. Riis showed
that a tree-resolution have a complexity gap and that Kra-
jicek’s model theoretic criterion for tree-resolution is in fact
a characterisation. More specifically, for any formula ψ in
predicate logic that there are two disjoint possibilities either
the sequence ψn has polynomial size tree-resolution refuta-
tions or the sequence ψn requires full exponential size tree-
resolution refutations. Furthermore, case (2) applies if and
only if ψ is valid in some infinite model (the refutations
tree-resolution complexity is set to∞ if the formula ψn is
satisfiable).
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Notice, that the number of boolean variables in ψ gener-
ally is nc for some c > 1 and it is possible for the refutation
complexity to be as bad as 2n

c

for any c > 0. Danchev and
Riis showed in [9] that for tree-like resolution there are no
complexity gaps above 2cn logn. In the same paper Riis and
Danchev tried - with limited success - to improve this result.
Based on our effort we conjectured that in fact for any for-
mula ψ in predicate logic there are three distinct cases: (1)
ψn has polynomial size tree-resolution refutations (2) for
some constant 0 < c < d ψn has size 2dn tree-resolution
refutations, but has (except for finitely many expections) no
refutations of size 2cn (3) for some constant c > 0 ψn re-
quires size 2cn log(n)- tree-resolution refutations. This con-
jecture is still open.

It follows from [3] that the FO statement ψ that some
binary relation R which defines a total ordering without a
smallest element (i.e. a violation of the least number prin-
ciple) has polynomial size resolution refutations. Since ψ
is satisfiable in some infinite models (e.g. (Z,<)) it fol-
lows that if there is a model theoretic criterion for full se-
quential (dag-like) resolution it must be different from that
for three-resolution. However, Danchev and Riis showed
in [10] that the characterisation for tree-resolution remains
valid for full dag-like resolution provided we consider ”rel-
ativised” FO formula ψ in predicate logic (for definition see
[10]) . This answered an open question by Krajicek and
showed that for each relativised FO formula ψ there are two
disjoint possibilities: (1) the sequence ψn has polynomial
size resolution refutations (2) the sequence ψn requires full
exponential size resolution refutations. Furthermore, case
(2) applies if and only if ψ is valid in some infinite model.

It is an open question whether for any ψ in predicate
logic there are two disjoint possibilities: (1) the sequence
ψn has polynomial size resolution refutations OR (2) the se-
quence ψn requires exponential size resolution refutations.
If this question can be answered positively we expect this
to be difficult to prove since an exponential lower bound for
the weak-pigeon hole principle (stating there is no map from
n to 2n) would follow just from a non-polynomial lower
bound. So far one of the deepest and technically most in-
volved theorems in resolution proof complexity has been
the exponential lower bound on the weak pigeon-hole prin-
ciple [18]. Also another difficulty is that it is not clear that
there is a simple model theoretic criterion that exactly cap-
tures the class of ψ for which ψn requires exponential size
resolution refutations.

More recently two new dichotomy results have been pub-
lished. To give the flavor of these theorems we state them,
but ask the reader to consult [7, 8] for precise definitions of
the involved concepts.

Theorem A : (S. Dantchev and B. Martin) (Improvement
of [7])

Given a FO sentence ψ which fails in all finite struc-
tures, consider its translation into a propositional CNF
contradictionCψ,n, where n is the size of the finite uni-
verse. Then either 1 or 2 holds:

(1) There exists a constant r such that Cψ,n has rank-r
Lovasz-Schrijver refutation for every n.

(2) There exists a positive constant a such that for ev-
ery n, every Sherali-Adams refutation of Cψ,n is of
rank at least na.

Furthermore, 2 holds if and only if ψ has an infinite
model.

To fully appreciate this gap, one should notice that each
rank k Lovasz-Schrijver refutation can be converted into a
rank k Sherali-Adams refutation.

In Danchev’s original paper only a poly-logarithmic
bound were given for this result.

Theorem B : (S. Dantchev, B. Martin, S. Szeider)([8])

Given a FO sentence ψ, which fails in all finite models.
Consider the sequence of parametrised contradictions
(Cψ,n,k)n∈N is a translation of ψ. Then exactly of one
the following three alternatives is valid:

(1) Cψ,n,k has a polynomial size tree-like resolution
refutations of a size bound by a polynomial indepen-
dent in n that does not depend on k.

(2a) Cψ,n,k has a parametrisised tree-like resolution
refutation of size βknα for some constants α and β
which depends of ψ only.

(2b) There exists a constant γ, 0 < γ < 1 such that for
every n > k, every parametrised tree-like resolution
refutation of Cψ,n,k is of size at least nk

γ

.

Furthermore, case (2) (i.e. case (2a) or case (2b)) oc-
cur if ψ holds in some infinite model. Furthermore,
(2b) holds if and only if ψ has an infinite model whose
induced hyper-graph has no finite dominating set.

1.3 Algebraic proof complexity

The Nullstellensatz proof system [1] and Polynomial
Calculus [4] are two of the most popular weak algebraic
proof systems. These systems have been studied quite in-
tensively since their introduction in the mid 1990s.

Let F be a fixed (algebraically closed) field, and let
u ∈ N . Given a (finite) collection Γ = {p1, p2, . . . , pλ}
of polynomials p ∈ F [x1, x2, . . . , xu], the task is to show
that the polynomials have no common root, i.e that there is
no (a1, a2, . . . , au) ∈ Fu such that p(a1, a2, . . . , au) = 0
for each p ∈ Γ.

One version of Hilbertz Nullstellensatz states that the
polynomials in Γ have no common root if and only if the
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identity polynomial 1 belongs to the ideal generated by the
polynomials in Γ. In other worlds there exists for each poly-
nomial pj ∈ Γ a polynomial rj ∈ F [x1, x2, . . . , xu] such
that 1 = Σλj=1rjpj . The expression 1 = Σλj=1rjpj con-
stitutes a Nullstellensatz proof. The degree of the proof
is defined as the maximal degree of the polynomials rjpj ,
j = 1, 2, . . . , λ.

We can think about each polynomial in Γ as a premise
and as 1 representing the contradiction. From this perspec-
tive a Nullstellensatz proof is then an ”indirect” proof (a
refutation) that shows that the premises (which state that
the polynomials p ∈ Γ have a common zero), lead to a con-
tradiction (= 1).

In most applications in propositional logic each variable
x1, x2, . . . , xn is assumed to take 0/1-values, in which case
for each variable x the equation x2−x is assumed to belong
to Γ. Occasionally, the fourier basis is used and the vari-
ables are assumed to take −1/1 values (and the underlying
field is assumed to have characteristic 6= 2). In this case for
each variable x the equation x2− 1 is assumed to belong to
Γ. In both cases (the 0/1 case as well as the −1/1 case) we
can drop the assumption that the F is algebraically closed.
In this paper we will not consider the fourier basis since the
natural translation of a FO sentence in general does not lead
to a polynomials of constant degree.

The polynomial calculus (PC) resembles more a tradi-
tional proof system. The idea behind PC is to show that
1 belongs to the ideal generated by the polynomials in Γ.
This is done in a logic style derivation using the following
two rules q p

q+p (cut) and q
rq (weakening). We have adopted

the terminology ”cut” and ”weakening” since these are the
logical operations that naturally corresponds to these rules.

Given the set Γ of polynomials, a PC refutation of Γ is
a sequences q1, q2, . . . , qs = 1 of polynomials where each
polynomial is either a premise (i.e. belongs to Γ) or can
be deduced by an application of either a cut or a weaken-
ing. The degree of the proof is the maximal degree of the
polynomials q1, q2, . . . , qs.

Finally, we would like to pay attention to the F-PC refu-
tation system defined in [11] partly based on a suggestion
in [17]. As noticed by a number of authors, the definition
of PC does not constitute a Cook-Recknow proof system
since no specific rules are given for how one is allowed to
handle the polynomial expressions. This can be mended by
considering the F-PC refutation system that P-simulate any
Frege propositional proof system [11] and is thus a strong
refutation system. The degree of a F-PC proof (defined as
the largest degree of a polynomial that appear in the deriva-
tion), remains unchanged if we consider the PC refutation
as taken part in the F-PC system.

2 The main result

To state the main result in larger generality we define
the refutation degree complexity of a system of satisfiable
polynomial equations as infinite. This allows us to discuss
the refutation degree complexity of a sequence ψn without
requiring that each ψn is unsatisfiable.

The main result can be stated as follows:

Theorem 1 : For each prime p and for each FO formula ψ
there exists a function l(n) ∈ Ω(log(n)) for NS and
l(n) ∈ Ω(log(log(n)) for PC, such that the propo-
sitional translation of ψ (a collection of polynomial
equations) leads to sequence ψn of polynomial equa-
tions with a refutation degree refutation complexity
d(n) over fields of characteristic p, that behaves in one
of 4 distinct ways:

1) The degree refutation complexity d(n) is bound by
a constant c < ∞ (with possible finitely many excep-
tions where the degree complexity is∞).

2) The degree refutation complexity d(n) is at least l(n)
for all values of n.

3) The degree refutation complexity d(n) is bound by a
constant c <∞ on an infinite set S, and is at least l(n)
on the complement N \ S. Furthermore, membership
n ∈ S is for some k ∈ N determined uniquely by
the value of n modulo qk (with possibly finitely many
exceptions).

4) The degree refutation complexity d(n) fluctuates
between constant and l(n) (and possibly beyond) in
a very particular way. More, specifically if d(n) is
strictly less than l(n) then d(m) = d(n) for allm > n
with m = n modulo pr for some r with pr ≤ l(n).

For any non-empty proper subset A ⊆
{(i), (ii), (iii), (iv)}, the decision problem of whether
a given input FO formula ψ has type belonging to
A, is undecidable. This undecidablity result remains
valid if we consider the promise decision problem
where each ψ is selected such that it is unsatisfiable in
all finite models.

The undecidable part implies trivially that each of the 4
possibilities can occur.

The theorem shows that for a fixed field F of finite char-
acteristic p (and for a suitable choice of the function l) the
class of first order formulae can be divided into 4 disjoint
classes. We will later show (Theorem 10) that the type of a
FO-formula does not depend on whether we consider NS-
refutations or PC-refutations.

It turns out that a first order formula ψ that is unsatis-
fiable in all models (including infinite models) is always of
type 1 (Lemma 7). Furthermore, it turns out that a first order
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formula ψ with even a slight irregular spectrum (i.e. where
the set S for which ψ has a model of size n cannot be de-
termined by properties of n modulo some powers of p) are
always of type 2. Formulae of type 3 and 4, have always a
very regular spectrum where the membership n ∈ S of the
spectrum of ψ is in general uniquely determined by proper-
ties of n modulo powers of p.

Finally, let us point out that the classification in Theorem
1 is highly robust with respect to the choice of the growth-
rate of the function l (at least as long as it satisfies the gen-
eral bounds stated in the theorem). If we replace, for exam-
ple, l with any non-decreasing function l′ ∈ O(log(n)) for
the NS-case [or l′ ∈ O(log(log(n))) for the PC-case] that
is not bound from above by a constant c <∞ each FO for-
mula ψ translates to a sequence ψn that has the same type
with respect to l′ as it has with respect to l.

3 Proof of the main theorem

The main result heavily uses the following general prin-
ciple that can be extracted from Krajicek’s Theorem 3.5 in
[15]. We suppress some of the parameters since they are not
needed for our purpose. The actual choice of the parameters
depends purely on the syntactical properties of the given FO
formula ψ (as well the underlying field F ).

Let ψ be a system of generating polynomials that gener-
ates a sequence ψn of polynomial equations over a field F
of characteristic p. There exists c = c(ψ, p) such that for
each d ∈ N there exists N = N(d) ≤ 2cd

[N = N(d) ≤ 22cd for the PC-case] and l ≤ cd
[l ≤ 2cd for the PC-case] such that for each n1, n2 ≥ N
with n1 = n2 modulo ql, ψn1 has a NS-refutation
[PC-refutation in the PC-case] of degree d if and only ψn2

has a NS-refutation [PC-refutation] of degree d

Let h : N → N ∪ {∞} and let l, r : N → N be
general functions with l and r non-decreasing. Assume that
the functions satisfy the following condition:

(4) For each d if for some n > l(d) we have h(n) = d,
then for all m with m > l(d) and m = n modulo qr(d) we
have h(n) = h(m).

Notice that since l and r are non-decreasing functions,
if h(n) < d for some n > l(d), then h(m) < d for all
m > l(d) with n = m modulo qr(d).

Now let us increase d and ask what can happen asymp-
totically when d tends to infinity. The next lemma help link
Kraijcek’s results with Theorem 1.

Lemma 2 : Let h : N → N ∪ {∞} and let l, r : N →
N be general functions with l and r non-decreasing,
that satisfy (4). Then exactly one of the following 4
possibilities holds:

1) {h(n) <∞ : n ∈ N} is finite

2) {h(n) <∞ : n ∈ N} is infinite and

{h(n) <∞ : n > l(h(n))} is empty

3) {h(n) <∞ : n ∈ N} is infinite and

{h(n) <∞ : n > l(h(n))} is finite and non-empty

4) {h(n) <∞ : n ∈ N} is infinite and

{h(n) <∞ : n > l(h(n))} is infinite

Each of the four cases corresponds to the four cases in
Theorem 1. This link follows by spelling out the concrete
consequences (in conjunction the conditions in 4) of each
of the four cases:

Lemma 2A : Let h, l, r : N → N be function that satisfies
(4). Then exactly one of the following four mutually
exclusive cases occurs.

1) There exits d0 ∈ N such that h(n) < d0 holds for
all n ∈ N with n > l(d0).

2) For all values of d ∈ N if n > l(d) then h(n) > d
for all n ∈ N .

3) N = S1 ∪ S2 can be written as a disjoint union of
two infinite sets S1 and S2 such that there exists d0 ∈
N with h(n) < d0 for all n ∈ S1 with n > l(d0) and
for all d ∈ N and n ∈ S2 with n > l(d), h(n) > d.

4) For arbitrarily large values of d ∈ N , h(n) = d
holds for some n ∈ N with n > l(d).

Proof: Directly from Lemma 2A using the properties of4
♣

Let h(n) denote the minimal degree of a NS (or PC)
refutation of ψn where ψ is a general FO formula. Then
according to Krajicek’s results h satisfies 4 with l(n) and
r(n) having l(n), qr(n) ∈ Ω(log(n)) for the NS case, and
having l(n), qr(n) ∈ Ω(log(log(n))) for the PC case. This
shows the major part of Theorem 1.

4 Case 1,2 and 3

We will now show that each of the four possibilities in
Theorem 1 can appear. We will illustrate this by choos-
ing variant’s of the pigeonhole principle and the counting
modulo p principle. Cases 1, 2 and 3 can be illustrated
by numerous examples. Currently various versions of the
weak pigeonhole principle are (essentially) the only cases
we have found with fluctuating complexity, though we con-
jecture that there are many other (natural) examples. Most
sequences of propositional formula that so far have been
considered in the literature have type 1) or 2).
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As an example, the bijective pigeonhole principle stat-
ing that there is no bijective map from {1, 2, . . . , n} to
{1, 2, . . . , n − 1} - is of type 2. The negation of the pi-
geonhole principle has NS-refutation degree n/2 according
to Razborov [19]. Let us consider this example from our
perspective. The violation of the pigeonhole principle can
be written as the conjunction of:

• ∀x∃y(y 6= n ∧R(x, y))

and

• ∀x, y, z((R(x, y) ∧R(x, z))→ y = z)

We refer to this conjunction as PHPn−1
n . This statement

says that there exits a point n, and a binary relation R that
defines an injective map from the universe to the universe
except for n. Translated into polynomial equations we get
(after a few cosmetic changes) the following system of poly-
nomial equations:

• Q1
i := Σnj=1xij − 1 = 0 for i ∈ {1, 2, . . . , n}

• Q2
ijk := xijxik = 0 for i, j 6= k ∈ {1, 2, . . . , n}

These polynomial equations have no common solution.
However, the equations do not have NS-refutations of de-
gree complexity in O(log(n))
[and do not have PC-refutations of degree O(log(log(n)))].
Thus the system of equations has NS-refutation degree
complexity (PC-refutation degree complexity) of type 2.

Consider the conjunction of PHPn−1
n with the following

two FO-sentences:

• ∀y∃xR(x, y)

• ∀x1, x2, y((R(x1, y) ∧R(x2, y))→ x1 = x2)

The resulting statement says that there exits a point n,
and a binary relation R that defines be bijection from the
universe to the universe except for n. Translated into poly-
nomial equations we get after a few cosmetic changes the
following system of polynomial equations:

• Q1
i := Σnj=1xij − 1 = 0 for i ∈ {1, 2, . . . , n}

• Q2
j := Σn−1

i=1 xij − 1 = 0 for j ∈ {1, 2, . . . , n}

• Q3
ijk := xijxik = 0 for i, j 6= k ∈ {1, 2, . . . , n}

• Q4
i1i2j

:= xi1,jxi2,j = 0 for i1 6= i2, j ∈ {1, 2, . . . , n}

• Q5
ij := x2

ij − xij = 0 for i, j ∈ {1, 2, . . . , n}

This system of polynomial equations has no solution
since a solution would define a bijection from {1, 2, . . . , n}
to {1, 2, . . . , n − 1}. The system has a NS-refutation of

degree 2 (see [2]). Thus the system of equations has NS-
refutation degree complexity (PC-refutation degree com-
plexity) of type 1.

For a problem of type 3 consider the negation of the
counting modulo p principle (where p is the characteristic of
the underlying field) in conjunction with the negation of the
pigeonhole principle for arbitrary functions (the two princi-
ple are expressed using two disjoint set of variables). More
specifically the translation of the violation of the counting
modulo p principle can be stated as follows [15]:

Let n ≥ p ≥ 2. For each p-element subset e ⊂
{1, 2, . . . , n} introduce a variable ze. Then consider the
polynomial equations:

• Qe := z2
e − ze = 1 for each variable ze

• Qe,f := zezf = 0 for every e, f such that e ∩ f 6= ∅
and e 6= f .

• Qi := Σe3ize − 1 for each i ∈ {1, 2, . . . , n}

In conjunction with these equations we add the equations

• Q1
i := Σnj=1xij − 1 = 0 for i ∈ {1, 2, . . . , n}

• Q2
ijk := xijxik = 0 for i, j 6= k ∈ {1, 2, . . . , n}

For all values for n where n 6= 0 modulo p, there is NS-
refutation (PC-refutation) of a very low degree over field of
characteristic p that refutes the polynomial equations Qe =
0, Qe,f = 0 and Qi = 0. When n = 0 modulo p the
modulo p equations has a solution and can thus be refuted.
The pigeonhole principle require even PC refutation degree
n/2 according to Razborov [19].

This suggest that the combined principle has degree
complexity n/2 when n = 0 modulo p, and has constant
degree complexity for n 6= 0 modulo p. That this is indeed
the case follows from lemma (we also need for the undecid-
ability result).

Lemma 3 : Let Γ and ∆ be two collections of polynomials
in disjoint set of variables. Assume that Γ is unsat-
isfiable (i.e. that the polynomials in Γ have no com-
mon zero) and assume that ∆ is satisfiable (i.e. that
the polynomials in ∆ have a common zero). Then the
collection Γ has a NS-refutation (PC-refutation) of de-
gree d if and only if Γ ∪ ∆ has a NS-refutation (PC-
refutation) of degree d.

Proof: Assume ΣPγ∈ΓQγPγ + ΣPδ∈∆QδPδ = 1 is a NS-
derivation of degree d. The polynomials in ∆ has a com-
mon zero ~η. Since the set of variables are disjoint, it fol-
lows that ΣPγ∈ΓQγPγ + ΣPδ∈∆QδPδ(~η) = ΣPγ∈ΓQγPγ
defines the 1 polynomial in the variables associated to Γ. In
other words ΣPγ∈ΓQγPγ = 1. This shows the ”if” direc-
tion for NS-refutations.
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Assume P1, P2, . . . , Pj , . . . , 1 is a PC-derivation Γ ∪
∆ `d 1. Let ~η be a common zero of the polynomials in Γ,
and substitute ~η into the variables associated with Γ. We get
a PC-derivation of polynomials in the variables associated
with ∆ of the formal 1 polynomial. This derivation has de-
gree ≤ d. This shows the ”if” direction for PC-refutations.

The ”only if” case is trivial for NS-refutations (let Qγ =
0 for each Pγ ∈ Γ). The ”only if” case is even more triv-
ial for PC-refutations (view a PC-refutation of ∆ as a PC-
refutation of ∆ ∪ Γ). ♣

5 The fluctuating case

We now show that case 4, the fluctuating case is non-
empty. The idea is to consider a weak version of the bijec-
tive pigeonhole principle that states that there is no bijection
from n to 2n. The violation of this principle can be written
as a conjunction of the following propositions:

• ∀x∃yR(x, y) ∨ S(x, y)

• ∀y∃xR(x, y)

• ∀y∃xS(x, y)

• ∀x, y, z(y 6= z → ¬R(x, y) ∨ ¬R(x, z))

• ∀x, y, z(y 6= z → ¬S(x, y) ∨ ¬S(x, z))

• ∀x, y, z(y 6= z → ¬R(x, y) ∨ ¬S(x, y))

• ∀x1, x2, y(x1 6= x2 → ¬R(x1, y) ∨ ¬R(x2, y))

• ∀x1, x2, y(x1 6= x2 → ¬S(x1, y) ∨ ¬S(x2, y))

The translation of this system of propositions leads after
a few cosmetic changes to the following system of polyno-
mial equations:

• Q1
i := Σjxij + Σjyij − 1 = 0 for i ∈ {1, 2, . . . n}

• Q2
j := Σixij − 1 = 0 for j ∈ {1, 2, . . . n}

• Q3
j := Σiyij − 1 = 0 for j ∈ {1, 2, . . . n}

• Q4
ijk := xijxik = 0 for i, j 6= k ∈ {1, 2, . . . n}

• Q5
ijk := yijyik = 0 for i, j 6= k ∈ {1, 2, . . . n}

• Q6
ijk := xijyik = 0 for i, j, k ∈ {1, 2, . . . n}

• Q7
ijk := xjixki = 0 for i, j 6= k ∈ {1, 2, . . . n}

• Q8
ijk := yjiyki = 0 for i, j 6= k ∈ {1, 2, . . . n}

The equations x2
ij−xij = 0 and y2

ij−yij that are a part of
the translation procedure are superfluous since they follow
by a (constant degree) NS-derivation (PC-derivation) from
the other equations. In order to see this consider for each
i, j ∈ {1, 2, . . . , n} the equations xijQ2

j = 0 and yijQ3
j =

0, combined with the equations Q7
ijk = 0 and Q8

ijk where
i, j, k ∈ {1, 2, . . . , n}.

We will show that over any field F of finite charac-
teristic p, this system of equations has NS-refutation (PC-
refutation) degree complexity that is asymptotically of the
fluctuating type.

Notice, that there are 5n3 − 4n2 + 3n equations. These
equations have no solution since a solution could be used
to define a bijection from {1, 2, . . . n} to {1, 2, . . . 2n} vi-
olating a ‘weak’ version of the pigeonhole principle. Thus
for each n the constant polynomial 1 belongs to the ideal
generated by polynomials Q1

i , Q
2
j , . . . Q

8
ijk. Further, there

exist polynomials P 1
i , P

2
j , . . . P

8
ijk such that ΣiP 1

i Q
1
i +

ΣjP 2
j Q

2
j + . . . + ΣijkP 8

ijkQ
8
ijk = 1. Let dP (n) denote

the maximal degree of a summand in this expression, and
let dNS(n) denote the equations NS-degree complexity i.e.
the smallest value of dn(n) when P range over all possible
choices of polynomials P 1

i , P
2
j , . . . P

8
ijk.

The equations can be simplified by relabeling the vari-
ables! Consider the equations:

• Σmj=1xij − 1 = 0 for i = 1, 2, . . . n

• Σni=1xij − 1 = 0 for j = 1, 2, . . . m

• xijxik = 0 for i = 1, 2, . . . n

and j < k ∈ {1, 2, . . . m}

• xjixki = 0 for i = 1, 2, . . . m

and j 6= k ∈ {1, 2, . . . n}

Now since xy = yx the system of equations remains
essentially unchanged if we drop the requirement j < k
and replace the third set of equations with:

• xijxik = 0 for i = 1, 2, . . . n

and j 6= k ∈ {1, 2, . . . m}

The new slightly modified system has the same set of solu-
tions. The new system contains 6n3 − 4n2 + 3n equations.
This system of equations has already been analyzed in [2].

If we let m = 2n and let xi,n+j := yij we notice that
this system of equations is identical to the former system
(still of course containing 5n3−4n2 +3n equations). If we
modify the original system by adding the equations

• Q9
ijk := yijxik = 0 for i, j, k ∈ {1, 2, . . . n}
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to the original system of equations, we get a new system
of equations that is equivalent to the original system, but
contains same 6n3 − 4n2 + 3n equations as belong to the
”PHPmn (onto)”.

Let Fp denote a fixed field of characteristic p 6= 0. Then
the system of polynomial equations in [2] for the bijective
pigeonhole principle PHPn+pl

n (bij) that states that there is
no bijection from a set D with n elements to the set R with
n+ pl elements.

Proposition (Beame, Riis) Let F be any field of charac-
teristic p. If pl < n, there is a NS-refutation of
PHPn+pl

n (bij) of degree pl − 1. On the other hand if
n ≥ ((p+ 2)l − pl)/2 then any Nullstellensatz refuta-
tion of PHPn+pl

n (bij) must have degree at least 2l−1.

Proof: The first part is Lemma 16 in [2] while the second
part is Theorem 12 in [2]. ♣

We need a slight variation (and in many ways a weaker
version) of this proposition

Lemma 4 : Let F be any field of characteristic p. If
pl < n, for each r 6= 0 modulo p with rpl < n

there is a NS-refutation of PHPn+rpl

n (bij) of degree
pl − 1. On the other hand any Nullstellensatz refuta-
tion of PHPn+rpl

n (bij) must have NS-refutation degree
in Ω(log(n))

Proof: The proof follows very closely the argument in [2]
with minor changes. Better bounds can be achieved using
, however for our application we only need relatively weak
NS-degree lower bounds. For more details see the technical
report [22]. ♣

From Lemma 4 it follows that the translation of the FO-
formula ψ leads to a sequence ψn that has NS-degree refu-
tation complexity of the fluctuating type. It follows from
Theorem 10 (that is a simple consequence of a result by
Krajicek (lemma 9)), that ψn also has PC-degree refutation
complexity of the fluctuating type.

6 Undecidability of the asymptotic behavior

We have shown that a given FO formula ψ, translates
into a sequence ψn of polynomial equations that has a NS-
refutation complexity [PC-refutation complexity] that has
exactly one of four types of behaviors, 1, 2, 3 and 4. Let
A ⊂ {1, 2, 3, 4} be a proper non-empty subset. In this sec-
tion we will show that the problem of deciding if a given
first order formula ψ leads to a sequence ψn that has a com-
plexity behavior of a type belonging to A - is undecidable.

Lemma 5 : Let ψ be a FO-formula.

If ψ is of type 1 i.e. if ψn has constant degree complex-
ity for all but finitely n (where the degree complexity

is∞), then for any formula η (irrespective of its type),
ψ ∧ η is also of type 1.

If ψ is of type 2 i.e. if ψn has degree complexity≥ l(n)
for all n, then for any η the formula ψ∧η has the same
type as η.

Proof: Obvious given lemma 3. ♣

Lemma 6 : There is a class Θ of FO formulae such that
membership of Θ is recursive. For each ψ ∈ Θ there
are two exclusive possibilities:

i) ψ is valid in all finite models

ii) ψ is invalid in all sufficiently large finite models as
well as in all infinite models.

Furthermore, there is no decision procedure that in
general decides whether case i) or case ii) applies to a
given ψ ∈ Θ.

Proof (brief outline): For a more detailed outline see [22].
Consider the collection of FO sentences that contains a con-
junction of the axioms of Robinson’s Q modified so these
define a general unspecified initial seqment of the natural
numbers (like in Paris’ and Wilkie’s definition of an initial
segment with a ”top” element). These axioms force any fi-
nite model of propositions in Θ to define an initial segment
of the set of the natural numbers). For each pair of poly-
nomials S and R (with coefficients in the natural numbers)
add axioms ηS,R that define the polynomials S and R on
the initial segment. Finally in conjunction to this add the
FO proposition that states that the equation S = R has no
(integer) solutions in the initial segment {1, 2, . . . , n}. Let
ψS,R denote the resulting FO formula and let Θ consist of
the class of all such ψS,R.

Now the point is that the FO formula ψS,R has a model
of size n if and only if S = R has no solution where all
variables have values in {1, 2, . . . , n}. Consequently the
diophantine equation S = R has no solution in the natural
numbers if and only if ψS,R is valid in all finite models.
According to a variant of the unsolvability of Hilbert’s 10th
problem this decision problem is unsolvable. (the variant
states that the decision problem whether a given polynomial
with integer coefficients has a zero in the natural numbers
is undecidable).

If ψS,R is invalid (i.e. if the equation S = R has a so-
lution over the natural numbers), the formula ψS,R is also
invalid in infinite (non-standard) models, since these mod-
els contain the standard natural numbers. ♣

Lemma 7 : If ψ is an FO-formula such that ψ is unsatisfi-
able in all models (finite as well as infinite), then there
exists for each field F a number d ∈ N such that each
ψn has a degree d NS-refutation.
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Proof: The proof is somewhat similar to the proof that such
formula ψ leads to sequences ψn of propositional formula
that have polynomial tree-resolution refutations [21]. And
it is similar to the proof that the such ψ has constant rank
Lovasz-Schrijver refutation [7]. Please see the technical re-
port [22] for the details. ♣

Lemma 8 : The decision problem whether a given first or-
der formula ψ leads to a sequence ψn that has a com-
plexity behavior in A - is undecidable.

Proof: Given a non-empty proper subset A ⊂ {1, 2, 3, 4},
without loss of generality we can assume that 1 ∈ A (other-
wise replace A with {1, 2, 3, 4} \A).

Since A is a proper subset, at least one of 2, 3 or 4 does
not belong toA. Pick a FO formula ψ of a type not inA (i.e.
type 2, 3 or 4). Now for each θS,R ∈ Θ consider the FO
formula θS,R ∧ ψ. Now according to lemma 6 and lemma
7 any θS,R ∈ Θ is either of type 1 (if it is unsatisfiable for
some n ∈ N ) or of type 2 (if it is satisfiable for all n ∈ N ).
Thus, according to lemma 5, θS,R ∧ ψ is of type 1 if and
only if θS,R is of type 1, which happens if and only if the
equation S = R has a solution on N . ♣

7 NS versus PC

In general the exists a sequence of polynomial equations
that have constant PC-refutation degree complexity, while
the sequence have linear NS-refutation degree complexity.
If however, we restrict ourself to the uniform sequences
generated by a FO formula, Krajicek [15] have shown that
such a situation cannot occur.

Lemma 9 : [Krajicek] [15] Let S ⊆ N be a fixed infinite
set. Assume that ψn has degree d PC-refutations for
each n ∈ S. Then there exists a constant d′ ≥ d
such that each ψn with n ∈ S, has a degree d′ NS-
refutation.

Theorem 10 : For an FO-formula ψ, the type of ψ with
respect to the NS-refutation complexity behavior of ψn
is identical to the type of ψ with respect to the PC-
refutation complexity behavior of ψn.

Proof: A direct application of lemma 9, shows that a FO-
formulae of type 1,2 or 3 with respect to to NS-refutations
(PC-refutations) has the same type with respect to PC-
refutations (NS-refutations). It follow then from Theorem
1 that a first order formula ψ is of type 4 with respect to
NS-refutation complexity if and only if it is of type 4 with
respect to PC-refutation complexity. ♣

8 Final remarks

The big question is whether the main result remain valid
for faster growth rates. We conjecture - in fact spend some
considerable effort in trying to prove this - that the main
theorem remains valid if l has growth rate nε for some suf-
ficiently small ε > 0 for the NS-case (and possibly for the
PC-case). Such a result would be important as it would
unify many known results.

One consequence of Theorem 1 is that the translation of
any FO formula ψ leads to a sequence ψn that asymptot-
ically has worst case refutation degree complexity that ei-
ther is constant (case 1) or has growth rate Ω(l(n)) (case
2,3,4). Thus according to the current version of Theorem 1,
any non-constant lower bound on the NS-refutation degree
[PC-refutation degree] automatically ”lifts” to an Ω(l(n))
lower bound NS-refutation degree [PC-refutation degree].
If Theorem 1, could be shown to be valid for l ∈ nΩ(1) by
the same argument, any non-constant lower bound could be
lifted to a nΩ(1)-degree lower bound.

Another interesting question is if it possible to extend
Krajicek’s model theoretic approach to include model theo-
retical criteria that correspond to the fluctuating NS-degree
(PC-degree) refutation complexity.
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