
Improved Software Defect Prediction

Martin Neil and Norman Fenton (Agena Ltd and Queen Mary, University of London)

Abstract

Although a number of approaches have been taken to quality prediction for software, none have
achieved widespread applicability. This paper describes a single model to combine the diverse forms
of, often causal, evidence available in software development in a more natural and efficient way than
done previously. We use Bayesian Networks as the appropriate formalism for representing defect
introduction, detection and removal processes throughout any life-cycle. The approach combines
subjective judgements from experienced project managers and available defect rate data to produce a
risk map and use this to forecast and control defect rates. Moreover, the risk map more naturally
mirrors real world influences without any distracting mathematical formality. The paper focuses on the
extensive validation of the approach within Philips Consumer Electronics (dozens of diverse projects
across Philips internationally).
The resulting model (packaged within a commercial software tool, AgenaRisk, usable by project
managers) is now being used to predict defect rates at various testing and operational phases. The
results of the validation confirm that the approach is scalable, robust and more accurate that can be
achieved using classical methods. We have found 95% correlation between actual and predicted
defects.
The defect prediction models incorporate cutting-edge ideas and results from software metrics and
process improvement research and package them as risk templates that can either be applied either off-
the-shelf or after calibrating them to local conditions and to suit the software development processes in
use.

1. INTRODUCTION

A number of authors, for example [3, 6, 21], have recently used Bayesian Networks (BNs) in software
engineering management. In our own earlier work [8] we have shown how BNs can be used to predict
the number of software defects remaining undetected after testing. This work lead to the AID tool [20]
developed in partnership with Philips, and used to predict software defects in consumer electronic
products. Project managers use a BN-based tool such as AID to help decide when to stop testing and
release software, trading-off the time for additional testing against the likely benefit.

Rather than relying only on data from previous projects, this work uses causal models of the Project
Manager’s understanding, covering mechanisms such as:

• poor quality development increases the number of defects likely to be present
• high quality testing increases the proportion of defects found.

Causal models are important because they allow all the evidence to be taken into account, even when
different evidence conflicts. Suppose that few defects are found during testing – does this mean that
testing is poor or that development was outstanding and the software has few defects to find?
Regression-based models of software defects are little help to a Project Manager who must decide
between these alternatives [10]. Data from previous projects is used to build the BN, with expert
judgements on the strength of each causal mechanism.

In this paper, we extend the earlier work by describing a much more flexible and general method of
using BNs for defect prediction. We describe how the AgenaRisk [1] toolset is used to create an
effective decision support system from the BN. We also describe a BN that models the creation and
detection of software defects without commitment to a particular development lifecycle. We then show
how a software development organisation can adapt this BN to their development lifecycle and metrics
data with much less effort than is needed to build a tailored BN from scratch.

The contents of the remainder of the paper are as follows: in Section 2 we introduce BNs and show
how they are used for causal modelling in software engineering. Section 3 introduces the idea of a
‘phase’ as a sub-part of a software lifecycle and shows how several phase models can be combined to
model different lifecycles. The phase model is described in detail in Section 4; Section 5 shows how it
is adapted to different development lifecycles. An experimental validation of defect predictions is
described in Section 6.

2. DEFECT PREDICTION WITH BNs

2.1 Bayesian Networks

A Bayesian network [13] (BN) is a graph (such as that shown in Figure 1) together with an associated
set of probability tables. The nodes represent uncertain variables and the arcs represent the
causal/relevance relationships between the variables.

Figure 1 BN for Defect Prediction

The BN of Figure 1 forms a causal model of the process of inserting, finding and fixing software
defects. The variable ‘effective KLOC implemented’ represents the complexity-adjusted size of the
functionality implemented; as the amount of functionality increases the number of potential defects
rises.

The ‘probability of avoiding defect in development’ determines ‘defects in’ given total potential
defects. This number represents the number of defects (before testing) that are in the new code that has
been implemented.

However, inserted defects may be found and fixed: the residual defects are those remaining after
testing. Variables representing a number of defects take a value in a numeric range, discretised into
numeric interval.

There is a probability table for each node, specifying how the probability of each state of the variable
depends on the states of its parents. Some of these are deterministic: for example the ‘Residual defects’
is simply the numerical difference between the ‘Defects in’ and the ‘Defects fixed’. In other cases, we
can use standard statistical functions: for example the process of finding defects is modelled as a
sequence of independent experiments, one for each defect present, using the ‘Probability of finding a
defect’ as a characteristic of the testing process:

Defects found = B(Defects inserted, Prob finding a defect)

where B(n,p) is the Binomial distribution for n trials with probability p. For variables without parents
the table just contains the prior probabilities of each state.

The quality of the development and testing processes is represented in the BN of Figure 1 by four
variables:

• probability of avoiding specification defects

• probability of avoiding defects in development

• probability of finding defects

• probability of fixing defects.

The BN in Figure 1 is a simplified version the BN at the heart of the decision support system for
software defects. None of these probability variables (or the ‘Effective KLOC implemented’ variable)
are entered directly by the user: instead, these variables have further parents modelling the causes of
process quality as we describe in Section 4.

2.2 Building the BN Model

Like all BNs, the defect model was built using a mixture of data and expert judgements.
Understanding cause and effect is a basic form of human knowledge, underlying our decisions. For
example, a project manager knows that more rigorous testing increases the number – and proportion of
– defects found during testing and therefore reduces the number remaining in the delivered software.

It is obvious that the relationship is not the other way round. However, it is equally obvious that we
need to take into account whatever evidence we have about: the likely number of defects in the
software following development; the capabilities of the team; and the adequacy of the time allowed.
The expert’s understanding of cause and effect is used to connect the variables of the net with arcs
drawn from cause to effect.

To ensure that our model is consistent with these empirical findings, the probability tables in the net are
constructed using data, whenever it is available. However, when there is missing data, or the data does
not take account of all the causal influences, expert judgement must be used as well.

3. MODELLING THE LIFECYCLE

When we describe defects being inserted in ‘implementation’ and removed in ‘testing’ we are referring
to the activities that make up the software development lifecycle. We need to fit a decision support
system to the lifecycle being used but practical lifecycles vary greatly. In this section, we describe how
this can be achieved without having to build a bespoke BN for every different lifecycle. The solution
has two steps: the idea of a lifecycle ‘phase’ modelled by a BN and a method of linking separate phase
models into a model for an entire lifecycle.

3.1 A Lifecycle Phase

We model a development lifecycle as made up from ‘phases’, but a phase is not a fixed development
process as in the traditional waterfall lifecycle. Instead, a phase can consist of any number and
combination of such development processes. For example, in the ‘incremental delivery’ approach the
phases could correspond to the code increments; each phase then includes all the development
processes: specification, design, coding and testing. Even in a traditional waterfall lifecycle it is likely
that a phase includes more than one process with, for example, the testing phases involving some new
design and coding work.

The incremental and waterfall models are just two ends of a continuum. To cover all parts of this
continuum, we consider all phases to include one or more of the following development activities:

• Specification/documentation: This covers any activity whose objective is to understand or
describe some existing or proposed functionality. It includes: requirements gathering writing,
reviewing, or changing any documentation (other than comments in code).

• Development (or more simply coding): This covers any activity that starts with some
predefined requirements (however vague) and ends with executable code.

• Testing and rework: This covers any activity that involves executing code in such a way that
defects are found and noted; it also includes fixing known defects.

The phase BN includes all these activities, allowing the extent of each activity in any actual phase to be
adjusted. In the most general case, a software project will consist of a combination of these phases. In
Section 4 we describe the BN model for one phase in more detail. First, in the next section, we
describe how multiple instances of the BN are linked to model an arbitrary lifecycle.

3.2 Linking Phases: Dynamic BNs

Whatever the development lifecycle, the main objective is: given information about current and past
phases we would like to be able to predict attributes of quality for future phases. We therefore think of
the set of phases as a time series that defines the project overall. This is readily expressed as a
Dynamic Bayesian Network (DBN) [2]. A DBN allows time-indexed variables: in each time frame one
of the parents of a time-indexed variable is the variable from the previous time frame. Figure 2 show
how this is applied when the quality attribute is the number of residual defects.

Figure 2 A Dynamic BN Modelling a Software Lifecycle

The dynamic variable is shown with a bold boundary. We construct the DBN with two nodes for each
time-indexed variable: the value in the previous time frame is the ‘input’ node (here ‘Residual defects
pre’) and it has no parents in the net. The node representing the value in this time frame is called the
‘output node’ (here ‘Residual defects post’). Note that the variable for the current time frame ‘Residual
defects post’ depends on the one for the previous time frame, but as an ancestor rather than as a parent
since it is clearer to represent the model with the intermediate variable ‘Total defects in’.

As well as defects, we also model the documentation quality as a time-varying quality attribute. Recall
that documentation includes specification, which even in iterative developments is often prepared in
one phase and implemented in a later phase. We consider specification errors as defects so a phase in
which documentation is the main activity may lead to an important incremental change in
documentation quality that is passed on to the next phase.

4. MODELLING A SINGLE LIFECYCLE PHASE

The phase BN is best presented as six ‘subnets’, each consisting of BN variables, as shown in Figure 3,
with grey arrows marking where there is at least one variable in one subnet which is a parent of a

variables in different subnets. The subnet plays no part in inference but is a useful for guide for the
user of the BN.

Specification and
Documentation

Scale of New
Functionality
Implemented

Defect
Insertion

and
Discovery

Design and
Development

Testing and
Rework

Figure 3 Subnets of the Phase BN

The subnets are:

• Scale of New Functionality Implemented. Since we are to build and test some software we
may be implementing some new functionality in this phase. This subnet provides a measure
of the size of this functionality.

• Specification and Documentation. This subnet is concerned with measuring the amount of
specification and documentation work in the phase, the quality of the specification process and
determining the change in the quality of the documentation as a result of the work done in the
phase (modelled as a time-indexed variable).

• Design and Development. This subnet models the quality of the design and development
process, which influences the probability of inserting each of the potential defects into the
software.

• Testing and Rework. This subnet models the quality of the testing process and the rework
process, influencing the probabilities of finding and fixing defects.

• Defect and Insertion and Discovery. This subnet follows the pattern already described in
Section 2.1, adapted to handle changes to the number of defects using a time-indexed variable.
The amount of ‘new functionality implemented’ will influence the inherent number of defects
in the new code. We distinguish between potential defects from poor specification and
‘inherent potential defects’, which are independent of the specification. The number of these
is a function of the number of function points delivered (based on empirical data by Jones [14,
15]).

Figure 4 shows the testing and rework subnet.

Figure 4 Specification and Documentation Subnet

Figure 5 shows the testing and rework subnet.

Figure 5 Testing and Rework Subnet

The better testing process the more likely we are to find the defects. We may or may not decide to fix
the defects found in testing in this phase; the success of such fixes will depend on the ‘probability of
fixing defect’. The two probabilities are used to update the number of residual defects in the ‘Defect
Insertion and Discovery’ subnet and to predict the number of residual defects at the start of any
subsequent phase in which further development and/or testing of the software takes place.

5. APPLICATION METHODOLOGY

5.1 Quality Indicators

Indicator variables used in the BN can be customised to match the indicators used within the
organisation. As well as editing names given to an indicator in the questionnaire, its probability table

can be adjusted. The formula language of the AgenaRisk toolset makes this feasible. Consider, for
example, the ‘Testing Process Quality’ (TPQ) shown in Figure 5. The suggested indicators are:

• Quality of documented test cases

• Testing process well defined

• Testing staff experienced

The process quality and the indicator values are judged on a five-point scale from ‘very low’ to ‘very
high’: the judgement being relative to the norm for the development environment. To set up the
indicators, an expert need only judge its ‘strength’ as an indicator of the underlying quality attribute.
Given that the process quality really is high, how certain is it that the staff will be experienced? We
have found the truncated normal distribution useful for creating a probability expressing an expert’s
assessment of the ‘strength’ of an indicator. For example, suppose:

Testing process well defined = TNormal(‘TPQ’, 0.6)

Testing staff experience = TNormal(‘TPQ’, 0.2)

this expresses the judgement that the staff experience is the stronger indicator, since it has a smaller
variance parameter (0.2) than the other indicator. In both cases the mean value of the indicator is given
by the parent process quality.

5.2 Toolset

Our experience from earlier commercial projects is that project managers and other users who are not
BN experts do not wish to use a BN directly via a general purpose BN editor. Instead, the BN needs to
be hidden behind a more specialised user interface. The toolset provided by AgenaRisk is actually an
application generator that enables toolset users to tailor both the underlying BN models and the user
interface that is provided to the end-users when the application is generated.

The main functions provided to the end-user are:

• Questionnaire interface Observations can be entered using a questionnaire interface, where
questions correspond to BN variables. Each question includes an explanation and the user can
select a state (if the number of states is small) or enter a number (if the states of the variable
are intervals in a numeric range). Answers given are collected into ‘scenarios’ that can be
named and saved. At least one scenario is created for each software development project but
it is possible to create and compare multiple scenarios for a project.

• Output graphs Predictions are displayed as probability distributions and as summary
statistics (mean, median, and variance). Distributions are displayed either as bar charts or as
line graphs (see Figure 6) depending on the type of variable and the number of states. The
predictions for several scenarios can be superimposed for ease of comparison. Summary
statistics can be exported to a spreadsheet.

The questionnaires shown to the end user can be configured widely. For example, questions can be
grouped and ordered arbitrarily and the question text is fully editable. Not all variables need have a
question, allowing any BN variable to be hidden from the end user.

An example probability distribution for defects inserted is shown in Figure 6.

Figure 6 Predicted inserted defects distribution for a single project

6. VALIDATION

The toolset and models have been widely trialled by various commercial organisations, including
Philips, Israel Aircraft Industries (Tel Aviv) and QinetiQ (Malvern). In addition, Philips has recently
completed a retrospective trial of thirty-two projects carried out in Bangalore.

6.1 Aim and Methodology

The aim of the recent Philips trial was to evaluate the accuracy of the AgenaRisk defect prediction
capabilities in software projects. Initially, 116 consumer electronics software projects completed
between 2001 and 2004 were assessed for inclusion in the trial against the following criteria:

• reliable data was available

• project resulted in a commercial product

• some key people from the project were still available for interview

The projects should represent a range of product domains and a variety of design layers, including user
interface, intermediate and driver layers.

Thirty-two projects were identified as suitable for the trial, based on these criteria.

A questionnaire, based on the AgenaRisk form for entering observations, was used to collect qualitative
and quantitative information from key project members. This data was entered into the model to
predict the number of defects found in testing. These predictions were then compared with the actual
number of defects found in all testing phases. Data was collected in two rounds: in the second round a
more detailed interview was conducted with the ‘Quality Leaders’ for each project resulting in
improved data and improved predictions.

The trial used a variant of the ‘all-activities’ phase-level net. The single BN was used since it was not
possible in this retrospective trial to separate the defect data into separate phases.

6.2 Results

The main results of the trial were very good indeed and a significant improvement over other
approaches:

• 0-30% inaccuracy in predictions achieved on 65% of projects;

• 30-70% inaccuracy on 32% of projects

• 70% inaccuracy on 3% of projects

Figure 7 shows the results of the validation trials at Philips in the form of defects predicted and actual
defects experienced. The linear correlation coefficient is 95%.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500

Actual defects

pr
ed

ic
te

d
de

fe
ct

s

Figure 7 Scatterplot showing correlation between actual and predicted defects (95%)

7. CONCLUSIONS

We have shown how a software lifecycle can be modelled using a Bayesian Network, in which each
time frame is a lifecycle ‘phase’ combining all software development activities in different amounts.
This approach allows a BN for software defect prediction to be tailored to different software
development environments. The AgenaRisk toolset makes this a practical approach, providing a
formula language with standard statistical distributions which can be used to change the quality
indicators available in each software development team.

The approach and toolset have been extensively trialled by industrial partners in a collaborative project.
Despite making little use of the available tailoring capabilities, a retrospective trial of 32 projects
showed a good fit between predicted and actual defect counts.

We have also used AgenaRisk to reason about software projects as a whole [9] and the trade-off
between time, resources and quality. Many of the factors are common in these two models, covering
both the assessment of process quality and the product quality achieved and required. In future, we
hope to combine the two models into a single decision support system for software projects.

REFERENCES

[1] AgenaRisk: Adavanced risk analysis for important decisions. http://www.agenarisk.com

[2] Bangsø, O. and Wuillemin, P. H., Top-down construction and repetitive structures representation
in Bayesian networks, In ‘Proceedings of The Thirteenth International Florida Artificial
Intelligence Research Symposium Conference’, Florida, USA., 2000. AAAI Press.

[3] Bibi, S. and Stamelos, I. Software Process Modeling with Bayesian Belief Networks In
Proceedings of 10th International Software Metrics Symposium (Metrics 2004) 14-16 September
2004, Chicago, USA.

[4] Dean, T. and Kanazawa, K. A model for reasoning about persistence and causation, Computational
Intelligence, 5:142-150, 1989.

[5] eXdecide: Quantified Risk Assessment and Decision Support for Agile Software Projects, EPSRC
project EP/C005406/1, www.dcs.qmul.ac.uk/~norman/radarweb/core_pages/projects.html

[6] Fan, Chin-Feng, Yu, Yuan-Chang. BBN-based software project risk management, J Systems
Software, 73, 193-203, 2004.

[7] Fenton, N. E., Krause, P., Neil, M., Probabilistic Modelling for Software Quality Control, Journal
of Applied Non-Classical Logics 12(2), 173-188, 2002

[8] Fenton, N. E., Krause, P., Neil, M., Software Measurement: Uncertainty and Causal Modelling,
IEEE Software 10(4), 116-122, 2002.

[9] Fenton, N. E., Marsh, W., Neil, M., Cates, P., Forey, S. and Tailor, T. Making Resource Decisions
for Software Projects. In Proceedings of 26th International Conference on Software Engineering
(ICSE 2004), (Edinburgh, United Kingdom, May 2004) IEEE Computer Society 2004, ISBN 0-
7695-2163-0, 397-406

[10] Fenton, N. E. and Neil, M. A Critique of Software Defect Prediction Models, IEEE Transactions
on Software Engineering, 25(5), 675-689, 1999.

[11] Fenton, N. E. and Neil, M. SCULLY: Scaling up Bayesian Nets for Software Risk Assessment,
Queen Mary University of London, www.dcs.qmul.ac.uk/research/radar/Projects, 2001.

[12] Fenton, N. E. and Pfleeger, S.L. Software Metrics: A Rigorous and Practical Approach (2nd
Edition), PWS, ISBN: 0534-95429-1, 1998.

[13] Jensen, F.V. An Introduction to Bayesian Networks, UCL Press, 1996.
[14] Jones, C. Programmer Productivity, McGraw Hill, 1986.
[15] Jones, C. Software sizing, IEE Review 45(4), 165-167, 1999.
[16] Koller, D., Lerner, U. and Angelov, D. A General Algorithm for Approximate Inference and its

Application to Hybrid Bayes Nets, In Proceedings of the 15th Annual Conference on Uncertainty
in AI (UAI), Stockholm, Sweden, August 1999, pages 324—333

[17] Kozlov, A.V. and Koller, D. Nonuniform dynamic discretization in hybrid networks, Proceedings
of the 13th Annual Conference on Uncertainty in AI (UAI), Providence, Rhode Island, August
1997, pages 314--325.

[18] Neil, M., Fenton, N. E., Forey, S. and Harris, R. Using Bayesian Belief Networks to Predict the
Reliability of Military Vehicles, IEE Computing and Control Engineering, 12(1), 2001, pp. 11-20.

[19] Neil, M., Fenton, N. E., Nielsen, L. Building large-scale Bayesian Networks, The Knowledge
Engineering Review, 15(3), 2000, pp. 257-284.

[20] Neil, M., Krause, P., Fenton, N. E., Software Quality Prediction Using Bayesian Networks in
Software Engineering with Computational Intelligence, (Ed Khoshgoftaar TM), Kluwer, ISBN 1-
4020-7427-1, Chapter 6, 2003

[21] Stamelosa, I., Angelisa, L., Dimoua, P., Sakellaris, P. On the use of Bayesian belief networks for
the prediction of software productivity Information and Software Tech, 45 (1), 51-60, 2003.

