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1. Background 

In modelling fault-tolerant systems , space state 
based approaches such as dynamic fault trees (DFTs) 
[4], have been shown to increase the power of 
traditional combinatorial models, like static fault trees 
(FTs) [9]. However, in practice, these approaches have 
severe limitations when dealing with the increasing 
complexity of component dependencies and failure 
behaviours of today’s real-time fault-tolerant systems. 
Two major limitations are: 1) the problem of space state 
explosion and 2) the inability to handle non-exponential 
failure distributions for some dynamic constructs.  

Bayesian Networks (BNs), and their extension for 
time-series modelling known as Dynamic Bayesian 
Networks (DBNs), [5], have shown to provide to a 
unified framework for reliability modelling and analysis 
of complex systems, [6]. In particular, the BN framework 
allows a compact representation of the temporal (and 
functional) dependencies among the system 
components and event-dependent failure behaviours 
characteristic of fault-tolerant systems, avoiding the 
state space explosion problem of the Markov Chain 
based approaches to DFT analysis, [3], [10]. 

In [8] we presented a new, effective and flexible 
event-based hybrid BN modelling method for Fault Tree 
analysis that scales up to large, complex dynamic 
systems. The new approach incorporates a recent 
powerful approximate inference algorithm for hybrid 
BNs, [7], based on a process of dynamic discretisation 
of the domain of all continuous variables in the BN, and 
the entropy error, as the basis for approximation. By 
combining the modelling capabilities of BNs with our 
dynamic discretisation inference algorithm we offer a 
unified technique for reliability analysis of large, safety 
critical systems, which overcomes most of the 
limitations of both space-state based reliability models 
and previous BN approaches. In our BN framework, 
continuous failure times with general parametric or 
empirical time-to-failure distributions occurring in 
practical applications, as well as discrete variables 

modelling the state of the system (or any subsystem) at 
a particular time instance, can be included in the model 
in a simple unified way. Approximated solutions for 
both static and dynamic constructs are obtained 
simultaneously, and so modularisation techniques, 
numerical integration and simulation methods are all 
unnecessary. Furthermore, Bayesian reliability data 
analysis can be easily carried out in our framework, 
allowing us to integrate information from multiple 
sources at different levels of granularity, as well as 
expert opinion. 

The approach offers a powerful framework for 
analysts and decision makers to successfully perform 
robust reliability as sessment. Sensitivity, uncertainty, 
diagnosis analysis, common cause failures, and 
warranty analysis can also be easily performed within 
this framework. All the example models in [8] were built 
and executed using the Bayesian Network tool 
AgenaRisk [1], in which the dynamic discretisation 
algorithm [7] is now implemented. 
 
2. Applying the approach to an example of 
FT-like analysis  

The example provided here is the redundant 
multiprocessor system, for which a detailed description 
is given in [2]. The BN model for this system is shown 
in Figure 1. It consists of a bus and two processing 
subsystems, each composed of a processor, a local 
memory bank, and a mirrored disk unit. Both 
subsystems have access through the bus to a shared 
memory bank, which will replace the local memory in 
case of a failure. Each mirrored unit is in turn a Hot 
Spare (HSP) redundancy configuration with one spare 
disk. For the whole system to be functional the bus and 
one of the subsystems must be functional. 

In our BN reliability model, continuous root nodes 
represent the time-to-failure of the input components of 
a given construct. In this example, the failure 
distribution for all the components is assumed to be 
exponential: the failure rates for the disk units, the 



processors, the memory units, and the bank 
are: 58.0 10Dλ −= × , 75.0 10Pλ −= × , 83.0 10Mλ −= × , 

and 92.0 10Bλ −= × , respectively. The time-to-failure of 
the fault tree constructs, connected in the model by 
means of incoming arcs to the components’ time -to-
failures, are defined as deterministic functions of the 
corresponding input components’ time -to-failure. Once 
the BN structure and nodes probability distributions 
have been defined, FT-like analysis is carried out using 
our new approximate algorithm for performing inference 
in hybrid BNs. By running the model for 40 iterations, 
we obtain that the reliability of the system at a mission 
time t = 5000 h is ( ) 0.014R t = . This compares very 

well to the analytical results given in [2]. 
To appreciate the power and novelty of our 

approach, it is important to note that, in our framework, 
no analytical calculation needs to be performed and no 
tables need to be populated. Once we have defined the 
marginal time-to failure distributions for the basic 
components, the CPDs for the DFT constructs are 
automatically estimated by modelling them as an 
approximate mixture of Uniform distributions. The 
dynamic discretisation algorithm fits a histogram 
composed of Uniform distributions. Any form can be 
used for the failure distribution of the system’s 
components. No closed-form solution for the system 
failure distribution is required. Therefore, we can easily 
estimate the failure distribution of the above system for 
any (non-exponential) time-to-failure of the input 
components. From the estimated failure distributions of 
the DFT constructs, we can obtain estimates for the 
reliability of any subsystem for a given mission time 
and other metrics of interest, like MTTF and warranty 
periods, for which analytical expressions might not be 
obtained.  
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