
Using Bayesian networks to predict
software defects and reliability
N Fenton*, M Neil, and D Marquez

Department of Computer Science, Queen Mary, University of London, London, UK

The manuscript was received on 12 December 2007 and was accepted after revision for publication on 2 May 2008.

DOI: 10.1243/1748006XJRR161

Abstract: This paper reviews the use of Bayesian networks (BNs) in predicting software defects
and software reliability. The approach allows analysts to incorporate causal process factors as
well as combine qualitative and quantitative measures, hence overcoming some of the well-
known limitations of traditional software metrics methods. The approach has been used and
reported on by organizations such as Motorola, Siemens, and Philips. However, one of the
impediments to more widespread use of BNs for this type of application was that, traditionally,
BN tools and algorithms suffered from an obvious ‘Achilles’ heel’ – they were not able to handle
continuous nodes properly, if at all. This forced modellers to have to predefine discretization
intervals in advance and resulted in inaccurate predictions where the range, for example, of
defect counts was large. Fortunately, recent advances in BN algorithms now make it possible
to perform inference in BNs with continuous nodes, without the need to prespecify discretiza-
tion levels. Using such ‘dynamic discretization’ algorithms results in significantly improved
accuracy for defects and reliability prediction type models.

Keywords: Bayesian networks, software defects, reliability

1 INTRODUCTION

In 1993 at what was then the leading international
software metrics conference Applications of Software
Metrics ASM 93 (in La Jolla, California), a leading
metrics expert recounted an interesting story about
a company-wide metrics programme that he had
been instrumental in setting up. He said that one of
the main objectives of the programme was to achieve
process improvement by learning from metrics what
process activities worked and what ones did not. To
do this the company looked at those projects that,
in metrics terms, were considered most successful.
These were the projects with especially low rates of
customer-reported defects, measured by defects per
thousand lines of code (KLOC). The idea was to learn
what processes characterized such successful pro-
jects. A number of such ‘star’ projects were identified,
including some that achieved the magical perfect
reliability target of zero defects per KLOC in the first
6 months post-release. However, it turned out that

what they learned from this was very different to
what they had expected. Few of the star projects
were, in fact, at all successful from any commercial
or subjective perspective. The main explanation for
the very low number of defects reported by custo-
mers was that they were generally so poor that they
never got properly completed or used.

Therein lies the classic weakness of traditional soft-
ware metrics that has been highlighted in [1] and
[2] – the omission of sometimes obvious and simple
causal factors that can have a major explanatory
effect on what is observed and learnt. If during a soft-
ware development project it is reported that very few
defects were found during a critical testing phase is
that good news or bad news? Of course it depends
on the testing effort, just as it does if it was reported
that a large number of defects were discovered.

Ideally, any model using defects found in one
phase of testing to predict defects found in subse-
quent phases (whether by testing in-house or by
customers post-release) should incorporate causal
factors such as testing effort and process quality.
Bayesian networks (BNs) are causal models that
enable this to be done. The earliest work that expli-
citly attempted to use such models and information

*Corresponding author: Department of Computer Science,

Queen Mary, University of London, London, UK. email:

norman@dcs.qmul.ac.uk

JRR161 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability

REVIEW PAPER 701



about intermediate software products to predict later
features of software quality was Hall et al. in 1992 [3].
In 1996 Neil and Fenton [4] proposed explicitly how
BNs could be used for defect prediction, and there
were related contributions in [5–9]. Until very re-
cently progress in this type of modelling was ham-
pered by both the limitations of the BN modelling
tools and difficulties in eliciting the necessary infor-
mation for realistic models. This paper reviews the
recent progress in the former (the latter has been
dealt with in [10]). The basis of the BN solution to
defect prediction by means of a very simple BN is
explained in section 2, and in section 3 the kind of
commercial-scale BN models that have been imple-
mented by organisations such as Motorola, Siemens,
and Philips are highlighted. In section 4 the solution
of one of the major weakness of the BN models is dis-
cussed. The weakness is the well-known ‘Achilles’
heel’ of BN inference algorithms; specifically, their
inability to properly handle continuous (non-Gaussian)
variables. Recent work on dynamic discretization
algorithms [11] has largely fixed this Achilles’ heel
and, in the case of defect and reliability prediction,
results in significantly increased accuracy.

2 A SIMPLE CAUSAL MODEL FOR SOFTWARE
DEFECT PREDICTION

A BN is a directed graph (such as that shown in Fig. 1)
together with a set of probability distributions. The
directed graph is referred to as the ‘qualitative’ part
of the BN, while the probability distributions are
referred to as the ‘quantitative’ part.

In the qualitative part the nodes represent uncer-
tain variables and the arcs represent the existence
of a causal/influential relationship between two
variables.

In this example the number of defect found in
operation (i.e. those found by customers) in a soft-
ware module is what is of interest to predict. This fac-
tor is dependent on the number of residual defects.
However, it is also critically dependent on the
amount of operational usage. If the system is not
used then no defects will be found irrespective of
the actual number of defects. The number of residual
defects is determined by the number introduced dur-
ing development minus the number that are success-
fully found and fixed. Obviously the number of
defects found and fixed is dependent on the number
of defects introduced into the system. The number
introduced into the system is influenced by problem
complexity and design process quality. The better the
design the fewer the number of defects and the less
complex the problem the fewer the number of
defects. Finally, the number of defects found is influ-
enced not just by the number there to find but also by
the level of the testing effort.

For the quantitative part of the BN there is, asso-
ciated with each child node, a conditional probability
distribution (CPD). Nodes without parents are quan-
tified through their marginal probability distribu-
tions. If the set of possible values of a node and its
parents are all discrete and finite then the CPD for
the node can simply be a table that specifies the
probability of each discrete state of the node given
each combination of states of its parents. In this
case the CPD is a called a Node Probability table
(NPT) and might look something like the one shown
in Fig. 2.

In this example if it is known that two defects were
inserted and that the testing quality is ‘good’ then the
probability of finding the two defects is 0.9, whereas
the probability of finding just one defect is 0.1.

It is clear even from the simple model in Fig. 1 that
in many situations the CPD needs to be defined as a
function rather than as an exhaustive table of all
potential parent state combinations. Some of these
functions are deterministic rather than probabilistic:
for example, the ‘residual defects’ is simply the
numerical difference between the ‘defects inserted’
and the ‘defects found and fixed’. In other cases,
standard statistical functions can be used. For exam-
ple, in this simple version of the model it is assumed
that ‘defects found and fixed’ is a binomial B(n,p) dis-
tribution where n is the number of defects inserted

Fig. 1 Simplified version of a BN model for software
defects and reliability prediction

Fig. 2 NPT for the node ‘defects found’ in the case of
simple discrete states

Proc. IMechE Vol. 222 Part O: J. Risk and Reliability JRR161 � IMechE 2008

702 N Fenton, M Neil, and D Marquez



and p is the probability of finding and fixing a defect
(which in this case is derived from the ‘testing qual-
ity’); in more sophisticated versions of the model
the p variable is also conditioned on n to reflect the
increasing relative difficulty of finding defects as n
decreases. Table 1 lists the full set of conditional
probability distributions for the nodes (that have par-
ents) of the BN model of Fig. 1. Note that the nodes
‘design quality’, ‘complexity’, ‘testing quality’, and
‘operational usage’ are all ranked nodes in the sense
of [10] which means that they have an underlying
[0,1] scale that enables them to be used in functions
as described in Table 1. The nodes without parents
are all assumed to have a prior uniform distribution,
i.e. one in which any state is equally as likely as any
other state (in the ‘real’ models the distributions for

such nodes would normally not be defined as uni-
form but would reflect the historical distribution of
the organization either from data or expert judge-
ment).

The BN is a compact representation of the complete
joint probability distribution of all the variables. The
power of BN models comes with the fact that, as ‘evi-
dence’ is entered (meaning that specific values are
assigned to variables in the model) the joint probabil-
ity distribution can be recalculated conditioned on
this ‘evidence’ using Bayesian propagation. The
updated marginal probability distribution of each
variable can then be observed. There are many tools
that perform the necessary calculations. In the re-
mainder of this paper the use of BN calculations will
be illustrated and it will be highlighted that using
BNs as causalmodels for software defects and reliabil-
ity prediction is simple and compelling.

Figure 3 shows the marginal distributions of the
simple model before any evidence has been entered.
Thus, this represents the uncertainty before any spe-
cific information is entered about this module. Since
uniform distributions for nodes without parents is
assumed it is clear that the module is just as likely
to have a very high complexity as a very low one,
and that the number of defects found and fixed in
testing is in a wide range where the median value is

Table 1 CPDs for the nodes of the BN model in Fig. 1

Node name CPD

Defects found in
operation

Binomial (n, p) where n ¼ ‘residual
defects’ and p ¼ ‘operational usage’

Residual defects Defects inserted – Defects found (and fixed)
in testing

Defects found in
testing

Binomial (n, p) where n ¼ ‘defects inserted’
and p ¼ ‘testing quality’

Defects inserted Truncated normal with range of zero to
500 with mean complexity · (1-design)
· 90 and variance 300

Fig. 3 BN model with marginal distributions for variables superimposed on nodes

JRR161 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability

Using Bayesian networks to predict software defects and reliability 703



Fig. 4 Zero defects in testing and high complexity observed

Fig. 5 Very high operational usage

Proc. IMechE Vol. 222 Part O: J. Risk and Reliability JRR161 � IMechE 2008

704 N Fenton, M Neil, and D Marquez



about 18–20 (the prior distributions here were for a
particular organization’s modules).

Figure 4 shows the result of entering two observa-
tions about this module:

(a) that it had zero defects found and fixed in testing;
(b) that the problem complexity is ‘high’.

Note that all the other probability distributions are
updated. The model is doing both forward inference
to predict defects in operation and backwards infer-
ence about, say, design process quality. Although
the fewer than expected defects found does indeed
lead to a belief that the post-release faults will drop,
the model shows that the most likely explanation is
inadequate testing.

Thus far no observation about operational usage
has been made. If, in fact, the operational usage is
‘very high’ (Fig. 5) then what has been achieved is
to replicate the apparently counter-intuitive empiri-
cal observations [12] whereby a module with no
defects found in testing has a high number of defects
post-release.

However, assume that the test quality was ‘very
high’ (Fig. 6). Then it is necessary to completely
revise existing beliefs. It is fairly probable that the
module will be fault free in operation. Note also that
the ‘explanation’ is that the design process is likely

to be very high quality. This type of reasoning is
unique to BNs. It provides a means for decision
makers (such as quality assurance managers in this
case) to make decisions and interventions dynami-
cally as new information is observed.

Readers who are interested in running this model
themselves can do so by downloading the free evalua-
tion version of the BN software [13] and opening the
example model called ‘software defect prediction’ in
the Advanced Models directory.

3 COMMERCIAL-SCALE VERSIONS OF THE
DEFECT PREDICTION MODELS

The ability to do the kind of prediction and what–if
analysis described in section 2 has proved to be very
attractive to organizations who need to monitor and
predict software defects and reliability, and who
already collect defect-type metrics. Hence, organi-
zation such as Motorola [2, 14], Siemens [15], and
Philips [16] have exploited models and tools originally
developed in [17] to build large-scale versions of the
kind of model described in section 2. It is beyond the
scope of this paper to describe the details of these
models and how they were constructed and validated,
but what typifies the approaches is that they are based
around a sequence of testing phases, including testing

Fig. 6 Testing quality is very high

JRR161 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability

Using Bayesian networks to predict software defects and reliability 705



activities such as system testing, integration testing,
and acceptance testing that are defined as part of the
companies’ software processes (and hence for which
relevant defect and effort data is formally recorded).
In some cases a testing phase is one that does
not involve code execution, such as design review.
The final testing phase is generally assumed to be
operational testing which normally takes the form of
some fixed period of post-release testing; it is informa-
tion on this final phase that enable the organizations
to monitor and predict reliability. Corresponding to
each phase is a ‘subnet’ such as the one in Fig. 7,
where a subnet is a component of the BN with inter-
face nodes to connect the component subnet to other
parent and child subnets. For the final ‘operational’
phase, there is, of course, no need to include the nodes
associated with defect fixing and insertion.

The distributions for nodes such as ‘probability of
finding defect’ derive from other subnets such as
the one shown in Fig. 8. The particular nodes and dis-
tributions will, of course, vary according to the type
of testing phase.

Two examples are now presented to give a feel for
the kind of expert elicitation and data that was
required to complete the CPDs in these kinds of mod-
els. These examples are the nodes ‘probability of find-
ing a defect’ and ‘testing process overall effectiveness’

1. The CPD for the node ‘probability of finding a
defect’. This node is a continuous node in the
range [0,1] that has a single parent ‘testing pro-
cess overall effectiveness’ that is a ranked node
(in the sense of [10] on a five-point scale from
‘very low’ to ‘very high’). For a specific type of

testing phase (such as integration testing) the
organization had both data and expert judge-
ment that enabled them to make the following
kinds of assessment.

Typically (i.e. for our average level of test qual-
ity) this type of testing will find approximately
20 per cent of the residual defects in the system.
At its best (i.e. when the level of testing is at its

best) this type of testing will find 50 per cent of
the residual defects in the system; At its worst it
will only find 1 per cent

Based on this kind of information the CPD for

the node ‘probability of finding a defect’ is a

partitioned expression such as the one in

Table 2. Thus, for example, when overall testing

process effectiveness is average, the probability

of finding a defect is a truncated normal

distribution over the range [0,1] with mean 0.2

and variance 0.001.

2. The CPD for the node ‘testing process overall
effectiveness’. This node is a ranked node on a
five-point ranked scale from ‘very low’ to ‘very
high’. It has three parents ‘testing process qual-
ity’, ‘testing effort’, and ‘quality of overall docu-
mentation’ which are all also ranked nodes on
the same five-point ranked scale from ‘very low’
to ‘very high’. Hence, the CPD in this case is a
table of 625 entries. Such a table is essentially
impossible to elicit manually, but the techniques
described in [10] (in which ranked nodes are
mapped on to an underlying [0,1] scale) enabled
experts to construct a sensible table in seconds
using an appropriate ‘weighted expression’ for

Fig. 7 Defects phase subnet

Proc. IMechE Vol. 222 Part O: J. Risk and Reliability JRR161 � IMechE 2008

706 N Fenton, M Neil, and D Marquez



the child node in terms of the parents. For exam-
ple, the expression elicited in one case was a
truncated normal (on the range [0,1]) with
mean equal to the weighted minimum of the
parent values (where the weights were: 5.0 for
‘testing effort’, 4.0 for ‘testing quality’, and 1.0
for ‘documentation quality’) and the variance
was 0.001. Informally this weighted minimum
expression captured expert judgement such as

‘documentation quality cannot compensate for
lack of testing effort, although a good testing pro-
cess is important’.

As an illustration Fig. 9 shows the resulting
distribution for overall testing process effective-
ness when testing process quality is average,
quality of documentation is very high, but testing
effort is very low.

Using a BN tool such as [13] or [18] the various sub-
nets are joined, according to the BN object approach
[19–21] as shown in Fig. 10. Here each box represents
a BN where only the ‘input’ and ‘output’ nodes are
shown. For example, for the BN representing the

defects in phase 2 the ‘input’ node residual defects
pre is defined by the marginal distribution of the
output node residual defects post of the BN represent-
ing the defects in phase 1.

The general structure of the BN model proposed
here is relevant for any software development organi-
zation whose level of maturity includes defined
testing phases in which defect and effort data is
recorded. However, it is important to note that a num-
ber of the key probability distributions will inevitably
be organization/project specific. In particular, there
is no way of producing a generic distribution for the
‘probability of finding a defect’ in any given phase
(and, as is discussed below this is especially true of
the operational testing phase); indeed, even within a
single organization this distribution will be condi-
tioned on many factors (such as ones that are unique
to a particular project) that may be beyond the scope
of a workable BN model. At best it can be assumed
that there is sufficient maturity and knowledge within
an organization to produce a ‘benchmark’ distribu-
tion in a given phase. Where necessary this distribu-
tion can then still be tailored to take account of
specific factors that are not incorporated in the BN
model. It is extremely unlikely that such tailoring will
always be able to take account of extensive relevant
empirical data; hence, as in most practically usable
BN models, there will be a dependence on subjective
judgements. However, at least the subjective judge-
ments and assumptions are made explicit and visible.

The assumptions about the ‘probability of finding
a defect’ are especially acute in the case of the

Fig. 8 Typical subnet for testing quality

Table 2 CPD for node ‘probability of finding a defect’

Parent (overall testing
process effectiveness) state Probability of finding a defect

Very low TNormal (0.01, 0.001, 0, 1)
Low TNormal (0.1, 0.001, 0, 1)
Average TNormal (0.2, 0.001, 0, 1)
High TNormal (0.35, 0.001, 0, 1)
Very high TNormal (0.5, 0.001, 0, 1)

JRR161 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability

Using Bayesian networks to predict software defects and reliability 707



operational testing phase because, for example, in
this phase the various levels of ‘operational usage’
will be much harder to standardize on. What is being
done here is effectively the prediction of the reliabil-
ity and to do this accurately may require the opera-
tional usage node to be conditioned on a formally
defined operational profile such as described in the
literature on statistical testing [22].

4 THE NEED FOR DYNAMIC DISCRETIZATION

While the results in the commercial validation studies
referenced in section 3 were promising, the ‘Achilles’
heel’ of using BNs for this type of application was
soon revealed. The traditional approach to handling
(non-Gaussian) continuous nodes is static: these
nodes have to be descretized using some predefined
range and intervals. This is cumbersome, error prone,
and highly inaccurate because it assumes the analyst

knows in advance which ranges will contain most of
the probabilitymass for each node in themodel under
many different scenarios.

As a very simple example, for one organisation the
size (measured in KLOC) was an independent vari-
able used to derive empirical priors for defects
inserted. Empirical data gave a prior for ‘size’ whose
distribution had amean of 15 KLOC, with most ‘mod-
ules’ being less than 50 KLOC. The resulting statically
discretized model (taking account of the potentially
large range of the ‘continuous’ nodes) for the particu-
lar testing phase is shown in Fig. 11. In the model the
CPD for the node ‘defects found’ is defined as a bino-
mial distribution with p being the ‘probability of find-
ing a defect’ and n being the ‘defects inserted’. The
CPD for the node ‘residual defects’ is simply defined
by the deterministic function ‘defects found’ minus
‘defects inserted’. As with any attempt at discretiza-
tion, there is a need to balance the number of states

Fig. 9 Scenario for ‘overall testing effectiveness’

Fig. 10 Sequence of software testing phases as linked BN objects

Proc. IMechE Vol. 222 Part O: J. Risk and Reliability JRR161 � IMechE 2008

708 N Fenton, M Neil, and D Marquez



(accuracy) against computational speed. There was
much discussion, agonizing and continual refine-
ment of the discretizations. While predictions were
generally good within the ‘expected’ range (i.e. less
than 50 KLOC) there were wild inaccuracies for
modules whose properties were not ‘typical’. The
inaccuracies were inevitably due to discretization
‘errors’. For example, the model cannot distinguish
between any modules whose size is in the range
from 50 to 100 KLOC, so a module of size 51 KLOC
is treated identically to one of 99 KLOC, while if say
1005 defects are found then the model cannot distin-
guish such an observation from 1499 defects being
found.

Such inaccuracies, as well as the wasted effort over
selecting and defining discretization intervals, can
now be avoided by using a technique called dynamic
discretization that is described in [11] (being based
on the original work in [23]) and implemented in
[13]. This dynamic discretization algorithm, works
for hybrid BNs (meaning that the nodes can be either
discrete or continuous). Any node that is to be treated
as continuous is simply flagged in the model and the
modeller only has to specify a range (such as zero to
one for the ‘probability of finding a defect’ node
and zero to infinity for the ‘size KLOC’ node). The
resulting dynamically discretized model is shown
in Fig. 12.

The dynamic discretization algorithm uses entropy
error [23] as the basis for approximation. In outline,
the algorithm follows these steps.

1. Convert the BN to a junction tree (JT) and choose
an initial discretization for all continuous
variables.

2. Calculate the node probability table (NPT) of
each node given the current discretization.

3. Enter evidence and perform global propagation
on the JT, using standard JT algorithms.

4. Query the BN to get posterior marginals for each
node, compute the approximate relative entropy
error, and check if it satisfies the convergence
criteria.

5. If not, create a new discretization for the node by
splitting those intervals with the highest entropy
error.

6. Repeat the process by recalculating the NPTs and
propagating the BN, and then querying to get the
marginals and then split intervals with the high-
est entropy error.

7. Continue to iterate until the model converges to
an acceptable level of accuracy.

This dynamic discretization approach allows more
accuracy in the regions that matter and incurs less
storage space over static discretizations. In the imple-
mentation [13] of the algorithm the user can select

Fig. 11 Statically discretized defect model with marginal distributions

JRR161 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability

Using Bayesian networks to predict software defects and reliability 709



the number of iterations and convergence criteria,
and hence can go for an arbitrarily high precision
(at the expense of increased computation times). A
detailed formal analysis of the computational com-
plexity of the algorithm is the subject of ongoing
research because it is so highly dependent on the
particular BN topology and the location of the dyna-
mically discretized nodes. BN propagation is known
generally to be NP-hard [24] and this algorithm will,
like any BN algorithm, be unable to cope with models
in which the underlying graph clique sizes are large.
However, as illustrated in the following the dynamic
discretization (DD) algorithm normally runs almost
as efficiently as the non-DD algorithm when the
number of iterations is set at around 20.

To compare the differences in accuracy between
the DD versus non-DD version of the above model,
Table 3 shows the results achieved (rounded to inte-
ger values) in a number of scenarios where it is possi-
ble to calculate the mean of the expected outcome
analytically. For example, when the KLOC size is
100 and it is known that 250 defects are found, then
given the prior assumptions about defects inserted
the expected mean for the node ‘residual defects’ is
1250. The mean of this node predicted in the DD ver-
sion is 1250, but in the non-DD version the mean is
825. The table clearly shows consistently accurate
predictions for the DD version while the non-DD ver-
sion is especially inaccurate in the more ‘extreme’
regions. For example, when the probability of finding

Fig. 12 Dynamically discretized defect model with marginal distributions

Table 3 Comparison between DD and non-DD version under different scenarios

KLOC — — — — 100 5 50 250 200 10 50 0.5
Probability finding defect 0.38 0.71 0.71 — — — — — 0.5 0.5 0.5 0.5
Defects inserted 2000 100 4000 0 — — — — — — — —
Defects found — — — — 250 100 100 100 — — — —
Mean of predicted residual
defects (non-DD)

1154 34 14 853 25 825 25 592 2429 3654 65 367 35

Mean of predicted residual
defects (DD)

1240 29 1160 0 1250 3 649 3650 1500 75 375 4

Expected residual defects (analytic) 1240 29 1160 0 1250 0* 650 3650 1500 75 375 4

*The prior expected defects inserted in this scenario is 45, but 100 defects are subsequently found. The BN model therefore correctly infers
that more than the number of defects inserted is a distribution in the range 100 to infinity.

Proc. IMechE Vol. 222 Part O: J. Risk and Reliability JRR161 � IMechE 2008

710 N Fenton, M Neil, and D Marquez



a defect is 0.71 and 4000 defects are inserted than the
mean of the residual defects is 1160; whereas the DD
model gets this right the non-DD model predicts a
mean of 14 853 primarily because 4000 defects lies
within the end interval [3000 to infinity]. All of these
calculations were done with the number of iterations
set to 20; the calculation time for a model of this size
is almost indistinguishable from the non-DD case
(less than 8 s on a standard PC).

A more comprehensive comparative analysis
between two versions of a commercial-scale model
(including a comparison on computation times) is
described in [25]. Using the data of the projects
described in [16] it was found that where predictive
accuracy in the non-DD version was poor, much of
this inaccuracy was due to the static discretization
and significantly improved predictions were achieved
in the DD version of the model; a typical example
would be where the actual defects were outside the
‘expected’ range – an actual value of say 1700 was pre-
dicted as 1000 with non-DD but 1500 with DD. For
large-scale models at high accuracy settings compu-
tation time can be significantly longer than non-DD
versions but since such models are rarely required
to run in ‘real-time’ this is not normally a concern.

5 CONCLUSIONS

For organizations that already collect software met-
rics data there is a compelling argument for using
BNs to predict software defects and reliability. The
causal models enable simple explanatory factors,
such as testing effort, to be incorporated which can
have a major impact on the resulting predictions.
While such BNmodels have proven to be useful, their
accuracy was traditionally constrained by the follow-
ing two factors.

1. The inevitable subjectivity resulting from expert
elicitation (since there is never sufficient objec-
tive data alone on which to build such models).

2. The static discretization necessary in BN infer-
ence algorithms.

While there is little that can be done to dramatically
improve the first of these, it has been shown that the
second is largely solvable. The radical new approach
to inference using dynamic discretization removes
the previous constraints and alsomakes itmuch easier
to build and modify BN models with ‘continuous’
nodes. This has resulted in significantlymore accurate
predictions with only minimal increases in computa-
tion time.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of Peter
Hearty, Paul Krause, Rajat Mishra, Lukasz Radlinksi,

and Manesh Tailor to this work, the support of EPSRC
and Agena in the projects, eXdecide (EP/C005406/1)
and DyFusion, and the EU in the project MODIST
(IST-2000-28749). We are also grateful to the extre-
mely incisive comments of the anonymous reviewers
whose comments have led to a much improved
paper.

REFERENCES

1 Fenton, N. E. and Neil, M. A critique of software defect
prediction models. IEEE Trans. Softw. Engng, 1999,
25(5), 675–689.

2 Gras, J.-J. End-to-end defect modeling. IEEE Soft., 2004,
21(5), 98–100.

3 Hall, P., May, J., Nichol, D., Czachur, K., and Kinch, B.
Integrity prediction during software development. In Pro-
ceedings of the IFAC Symposium on Safety of computer
control systems 1992 (SAFECOMP’92), computer systems
in safety-critical applications, Zurich, Switzerland, 1992,
pp. 239–244 (Pergamon Press, Oxford).

4 Neil, M. and Fenton, N. E. Predicting software quality
using Bayesian belief networks. In Proceedings of the
21st Annual software engineering workshop, NASA God-
dard Space Flight Centre, 1996, pp. 217–230 (NASA,
Maryland).

5 Ziv, H. and Richardson, D. J. Bayesian-network confir-
mation of software testing uncertainties. In Proceedings
of the Sixth European Software Engineering Conference
(ESEC), Zurich, 22–25 September 1997.

6 Dahll, G. Combining disparate sources of information
in the safety assessment of software-based systems.
Nucl. Engng Des., 2000, 195(3), 307–319.

7 Littlewood, B., Strigini, L.,Wright, D., Fenton, N. E., and
Neil, M. Bayesian belief networks for safety assessment
of computer-based systems. In System performance
evaluation methodologies and applications, (Ed. E.
Gelenbe), 2000, pp. 349–364 (CRC Press, Boca Raton, FL).

8 Amasaki, S., Mizuno, O., Kikuno, T., and Takagi, Y.
A Bayesian belief network for predicting residual faults
in software products. In Proceedings of 14th Interna-
tional Symposium on Software reliability engineering
(ISSRE2003), Denver, Colorado, November, 2003, pp.
215–22 (IEEE Computer Society Press).

9 Bibi, S. and Stamelos, I. Software process modeling
with Bayesian belief networks. Tenth International Soft-
ware Metrics Symposium (Metrics 2004), Chicago, IL,
USA, 2004.

10 Fenton, N. E., Neil, M., and Gallan, J. Using ranked
nodes to model qualitative judgements in Bayesian net-
works. IEEE Trans. Knowl. Data Engng, 2007, 19(10),
1420–1432.

11 Neil, M., Tailor, M., and Marquez, D. Inference in
hybrid Bayesian networks using dynamic discretization.
Stat. Comput., 2007, 17(3), 219–233.

12 Fenton, N. E. and Ohlsson, N. Quantitative analysis of
faults and failures in a complex software system. IEEE
Trans. Softw. Engng, 2000, 26(8), 797–814.

13 Agena Ltd. AgenaRisk, 2007, available from http://www.
agenarisk.com.

JRR161 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability

Using Bayesian networks to predict software defects and reliability 711

http://www


14 Pérez-Miñana, E. and Gras, J.-J. Improving fault pre-
diction using Bayesian networks for the development
of embedded software applications: research articles.
Softw. Test. Verif. Reliab., 2006, 16(3), 157–174.

15 Wang, H., Peng, F., Zhang, C., and Pietschker, A.
Software project level estimationmodel framework based
on Bayesian belief networks. In Proceedings of the Sixth
International Conference on Quality software (QSIC’06),
Beijing, China, 27–28 October, 2006, pp. 209–218 (IEEE
Computer Society Press).

16 Fenton, N. E., Neil, M., Marsh, W., Hearty, P.,
Marquez, D., Krause, P., andMishra, R. Predicting soft-
ware defects in varying development lifecycles using
Bayesian nets. Inform. Softw. Technol., 2007, 49, 32–43.

17 Fenton, N. E., Neil, M., and Krause, P. Software
measurement: uncertainty and causal modelling. IEEE
Softw., 2002, 10(4), 116–122.

18 Hugin A/S. Hugin expert, 2007, available from http://
www.hugin.com.

19 Bangsø, O. and Wuillemin, P. H. Top-down construc-
tion and repetitive structures representation in Baye-
sian networks. In Proceedings of 13th International
Florida artificial intelligence research symposium, FL,
USA, 2000, pp. 282–286 (AAAI Press, Menloe Park, CA).

20 Koller, D. and Pfeffer, A. Object-oriented Bayesian
networks. In Proceedings of the 13th Annual Confer-
ence on Uncertainty in AI (UAI), Providence, RI, 1997,
pp. 302–313 (Morgan Kaufmann, San Francisco).

21 Neil, M., Fenton, N., and Nielsen, L. Building large-
scale Bayesian networks. Knowl. Engng Rev., 2000,
15(3), 257–284.

22 Dyer, M. The cleanroom approach to quality software
development, 1992 (John Wiley & Sons, New York).

23 Kozlov, A. V. and Koller, D. Nonuniform dynamic dis-
cretization in hybrid networks. In Proceedings of the
13th Annual Conference on Uncertainty in AI (UAI),
Providence, RI, 1997, pp. 314–325 (AAAI Press, Menloe
Park, CA).

24 Cooper, G. F. The computational complexity of prob-
abilistic inference using Bayesian belief networks. Artif.
Intell., 1990, 42(2–3), 393–405.

25 Fenton, N. E., Radlinski, L., and Neil, M. Improved
Bayesian networks for software project risk assessment
using dynamic discretisation. In Software engineering
techniques: design for quality (Proceedings of software
engineering techniques 2006, Warsaw, Poland, 17–20
Oct 2006), (Ed. K. Sacha), 2006, pp. 139–148 (Springer,
Boston, MA).

Proc. IMechE Vol. 222 Part O: J. Risk and Reliability JRR161 � IMechE 2008

712 N Fenton, M Neil, and D Marquez

http://

