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Abstract 
A hybrid Bayesian Network (BN) is one 
that incorporates both discrete and 
continuous nodes. In our extensive 
applications of BNs for system 
dependability assessment the models are 
invariably hybrid and the need for efficient 
and accurate computation is paramount. 
We apply a new iterative algorithm that 
efficiently combines dynamic 
discretisation with robust propagation 
algorithms on junction tree structures to 
perform inference in hybrid BNs. We 
illustrate its use on two example 
dependability problems: reliability 
estimation and diagnosis of a faulty sensor 
in a temporal system. Dynamic 
discretisation can be used as an alternative 
to analytical or Monte Carlo methods with 
high precision and can be applied to a 
wide range of dependability problems.  
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1. Introduction 
We have used Bayesian Nets (BNs) in a 
range of real-world applications of system 
dependability assessment (see for example 
[Neil et al 2001, Neil et al 2003, Fenton et 
al 2004]). In such applications it is 
inevitable that there will be a mixture of 
discrete and continuous nodes (the 
resulting BNs are called hybrid). The 
traditional approach to handling (non-
Gaussian) continuous nodes is static: you 
have to discretise them using some pre-
defined range and intervals. However, this 
approach is unacceptable for critical type 

systems where there is a demand for 
reasonable accuracy.  To overcome this 
problem we have developed a new and 
powerful approximate algorithm for 
performing inference in hybrid BNs. We 
use a process of dynamic discretisation of 
the domain of all continuous variables in 
the BN. The approach is influenced by the 
work of [Kozlov and Koller, 1997] using 
entropy error as the basis for 
approximation. We differ from their 
approach by integrating an iterative 
approximation scheme within existing BN 
software architectures, such as in Junction 
Tree (JT) propagation [Jensen et al.  
1990]. Thus, rather than support separate 
data structures and a new propagation 
algorithm we use the data structures 
commonly used in JT algorithms.  
The power and flexibility of the approach 
is demonstrated by applying it to two 
dependability problems: 

• Estimating the reliability of a single 
system 

• Diagnosing whether a sensor is faulty 
from a sequence of observed readings 

These problems represent a very 
simplified version of fragments of the 
wide range of models we have 
implemented as part of commercial and 
research projects. These have been in areas 
as diverse as data fusion, parameter 
learning, discrete systems simulation, 
RAM (Reliability, Availability and 
Maintainability) evaluation and software 
defect prediction. The modelling has been 
made possible because our dynamic 
discretisation algorithm has recently been 
implemented in the commercial general-
purpose Bayesian Network software tool 
AgenaRisk [Agena 2005].  

 

2. Background 
BNs have been widely used to represent 
full probability models in a compact and 
intuitive way. In the BN framework the 
independence structure in a joint 
distribution is characterised by a directed 
acyclic graph, with nodes representing 
random variables (which can be discrete or 
continuous, and may or may not be 
observable), and directed arcs representing 
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causal or influential relationship between 
variables [Pearl, 1993]. The conditional 
independence assertions about the 
variables, represented by the lack of arcs, 
reduce significantly the complexity of 
inference and allow the underlying joint 
probability distribution to be decomposed 
as a product of local conditional 
probability distributions (CPD) associated 
with each node and its respective parents. 
Since a BN encodes all relevant qualitative 
and quantitative information contained in a 
full probability model, it is an excellent 
tool for many types of probabilistic 
inference where we need to compute the 
posterior probability distribution of some 
variables of interest (unknown parameters 
and unobserved data) conditioned on some 
other variables that have been observed.  
A range of robust and efficient 
propagation algorithms has been 
developed for exact inference on Bayesian 
networks with discrete variables [Pearl, 
1988, Lauritzen and Spiegelhalter, 1988, 
Shenoy and Shafer, 1990, Jensen et al, 
1990]. The common feature of these 
algorithms is that the exact computation of 
posterior marginals is performed through a 
series of local computations over a 
secondary structure, a tree of clusters, 
enabling calculation of the marginal 
without computing the joint distribution. 
See also [Huang, 1996]. 

The present generation of BN software 
tools attempt to model continuous nodes 
by numerical approximations using static 
discretisation as implemented in a number 
of software tools [Hugin, 2005, Netica, 
2005]. Although disctretisation allows 
approximate inference in a hybrid BN 
without limitations on relationships among 
continuous and discrete variables, current 
software implementations require users to 
define a uniform discretisation of the states 
of any numeric node (whether it is 
continuous or discrete) as a sequence of 
pre-defined intervals, which remain static 
throughout all subsequent stages of 
Bayesian inference regardless of any new 
conditioning evidence. The more intervals 
you define, the more accuracy you can 
achieve, but at a heavy cost of 
computational complexity. This is made 
worse by the fact that you do not 

necessarily know in advance where the 
posterior marginal distribution will lie on 
the continuum for all nodes and which 
ranges require the finer intervals. It 
follows that where a model contains 
numerical nodes having a potentially large 
range, results are necessarily only crude 
approximations.  
Alternatives to discretisation have been 
suggested by [Moral et al, 2001, Cobb and 
Shenoy, 2005], who describe potential 
approximations using mixtures of 
truncated exponential (MTE) distributions, 
[Koller at al., 1999] who combine MTE 
approximations with direct sampling 
(Monte Carlo) methods, and [Murphy, 
1999] who uses variational methods. There 
have also been some attempts for 
approximate inference on hybrid BNs 
using Markov Chain Monte Carlo 
(MCMC) approaches [Shachter and Peot, 
1989]. However, constructing dependent 
samples that mixed well (i.e., that move 
rapidly throughout the support of the target 
posterior distribution) remains a complex 
task. 

 

3. Dynamic Discretisation 
Let us denote by ΩX  the state space or 
range of a continuous valued node X  in 
the BN. The idea of discretisation is to 
approximate the marginal probability 
density of X  as follows: 

1. Split ΩX  into n  mutually exclusive 
and exhaustive intervals, where  

1 2 1 2 1[ , ],] , ], , ] , ]−Ω = �X n nx x x x x x   

when ΩX  is finite and  

1 2 1 2 1] , ],] , ], , ] , [−Ω = �X n nx x x x x x   

when ΩX  is infinite, and  

2. Define a piecewise constant function 
in each subinterval.  

Intervals can either be of uniform or 
variable width. Discretisation operates in 
much the same way when X  takes integer 
values but in this paper we will focus on 
the case where X  is continuous. 
Our approach to dynamic discretisation 
searches ΩX for the most accurate 
specification of the high-density regions, 
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given the model and the evidence, 
calculating a sequence of discretisation 
intervals in ΩX iteratively. At each stage in 
the iterative process a candidate 
discretisation, ΨX , is tested to determine 
whether the resulting discretised pdf p(X) 
has approached the true pdf within an 
acceptable degree of precision. At 
convergence ΩX is approximated by ΨX . 

By dynamically discretising the model we 
achieve more accuracy in the regions that 
matter and incur less storage space over 
static discretisations. Moreover, we can 
adjust the discretisation any time in 
response to new evidence to achieve 
greater accuracy. 
In outline, dynamic discretisation follows 
these steps:  

1. Convert the BN to a JT and choose an 
initial discretisation for all continuous 
variables.  

2. Calculate the discretised density of 
each continuous node given the 
current discretisation and propagate 
evidence through the BN.  

3. Query the BN to get marginals for 
each node and split those intervals 
with highest entropy error in each 
node.  

4. Repeat the process by recalculating the 
densities and propagating the BN, and 
then querying to get the marginals and 
then split intervals with highest 
entropy error. 

5. Continue to iterate until the model 
converges to an acceptable level of 
accuracy. 

 

4. Estimating System Reliability 
Our first example considers the efficacy of 
the dynamic discretisation approach to 
estimate the reliability of a continuous use 
system. Using a noninformative conjugate 
prior distribution for the unknown failure 
rate, λ , we can solve for the posterior 
distribution, ( | , )p f tλ , given f failures in 
t exposure time as follows: 

 
( ) ( , )

( | , ) ( )

p Gamma a b

p f t Poisson t

λ
λ λ
=

=
 

( )
1

( | , ) ( | , ) ( )

1
, ,

p f t p f t p

p f t Gamma a f t
b

λ λ λ

λ
−

∝
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With dynamic discretisation we do not 
need to assume conjugacy; hence the prior 
distribution for the rate could be any 
sensible shape and scale (a non-conjugate 
example, that uses an expert opinion as a 
prior, is provided with the evaluation 
version of AgenaRisk). However, to aid 
comparison we will use a conjugate 
example using the BN model shown in 
Figure 1. The failure rate, λ , is set as an 
non-informative Gamma prior distribution 

( ) ( 0.001, 1000)p Gamma a bλ = = =  and 
the Mean Time Between Failure(MTBF) is 
th reciprocal of the failure 
rate: 1/MTBF λ= . In addition to nodes for 
each of the variables defined above we 
have added an additional discrete node to 
test the requirement that the system will 
survive for more than 600 hours, thus 
transforming it to a hybrid BN. In Figure 1 
the node labels are annotated with their 
relevant functions. 

 
Figure 1 BN for reliability estimation example 

 
Figure 2 BN for reliability estimation example 

with marginal distributions superimposed on the 
graph 

If we observe five failures in 2000 hours 
of use the estimated marginal distributions 
after 50 iterations in AgenaRisk are shown 
in Figure 2. The mean failure rate 
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estimate, ( )E λ , is  0.00249 and the 
probability of surviving 600 hours is 
0.244. This compares very well with the 
analytical solution, ( , ) 0.0025E f tλ = . 

5. Faulty Sensor Diagnosis 
Here we wish to estimate the probability 
of a sensor being in a faulty state at any 
point in time. We are given a sequence of 
sensor readings taken from a system 
whose state is represented by a position 
and velocity vector ( , )t tP V  where the 
nodes are hidden and evolve over time. 
We also assume the system is self-
repairing and that these repairs are random 
(or the fault might be transient). 

We can model this as a Switching Kalman 
Filter Model (SKFM) and typically would 
have to use Monte Carlo or more complex 
methods to find a solution. In AgenaRisk 
we model this as a Dynamic BN (DBN) as 
follows. 
The first element in the DBN is a double 
Kalman Filter to model the dynamical 
elements of the system. This comprises:  

• Observation model tO to filter sensor 
noise from observations:  

2( | ) ( , )t t tp O P Normal P σ=  

• Transition model of two difference 
equations for tP  and tV :  

1 1t t tP P V− −= + , 1t tV V −=  

• Initial conditions for each of the 
system variables:  

0 1 0 2(0, ), (0, )V N P Nθ θ= =  

All system and observation variables are 
integers to represent the use of a one-
dimensional grid to track the system 
position. 
To model the fact that the sensor is self-
repairing we require a transition model for 
the sensor, tS : 

1

1

1

1

( | ) 0.99

( | ) 0.01

( | ) 0.9

( | ) 0.1

t t

t t

t t

t t

p S OK S OK

p S Faulty S OK

p S Faulty S Faulty

p S OK S Faulty

−

−

−

−

= = =
= = =
= = =
= = =

 

Sensor reliability is modelled in the 
observation model by conditioning the 

variance parameter, 2σ , on the sensor’s 
state: 

2

2

( | , ) ( , 10)

( | , ) ( , 1000)
t t t t

t t t t

p O P S OK Normal P

p O P S OK Normal P

σ
σ

= = =

= ¬ = =
 
The DBN graph for the complete model 
over seven time periods is shown in Figure 
3: 

 
Figure 3 DBN graph for the SKFM for sensor 

reliability for seven time periods 

We use dynamic discretisation to solve the 
model over 25 iterations for a set of 
simulated actual and observed positions. 
At each time period we estimate the 
probability of the sensor being in a faulty 
state, represented by tS . The results are 
shown in Figure 4 along with the 
corresponding time series plot of 

tA (simulated actual), tO  (observed) 
and ( )tp S OK=  (shown as %OK)  

time At Ot %OK
0 9 10 99
1 12 20 96
2 19 17 92
3 22 30 74
4 24 20 50
5 25 20 35
6 31 10 4
7 34 25 4
8 43 40 24
9 45 47 29

10 59 55 31    
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Figure 4 Table and time series plot of system 

position and probability of sensor failure 
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Notice that the initial observations lead to 
a rapid increase in the probability that the 
sensor is faulty. However, after time 
period 8 the observed position better tracks 
the actual position and as a consequence 
the probability that it has repaired itself 
also increases. 

 

6. Concluding Remarks 
We have provided an overview of a new 
approximate inference algorithm designed 
for a general class of hybrid BNs. This 
dynamic discretisation algorithm 
(implemented in the AgenaRisk software) 
finally frees BN modellers from the 
burden (and inaccuracies) associated with 
having to statically discretise continuous 
nodes.  We have highlighted how this 
approach enables us to estimate reliability 
of a simple system. The results compare 
very favourably with analytical methods. It 
is a simple leap from this example to 
considerably more complex examples, say 
involving families of systems modelled 
hierarchically or using censored data, 
where dynamic discretisation could 
provide alternative and perhaps better 
solutions to those provided by other 
approximate methods such as MCMC. 
This is amply demonstrated by the second 
example, which is an order of magnitude 
more complex than the first. Here we 
modelled a Kalman Filter Model (KFM) 
and then extended it to include 
conditioning discrete variables which 
themselves evolved over time, to produce 
a Switching Kalman Filter Model 
(SKFM). Typical solutions to this involve 
a variety of complex algorithms not found 
in discrete BN packages, yet a solution is 
easily and quickly produced using 
dynamic discretisation. 
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