Empirical Software Engineering, 6, 195-200, 2001.
"‘ © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Viewpoint Article: Conducting and Presenting
Empirical Software Engineering

NORMAN FENTON norman@agena.co.uk
Agena Ltd, 11 Main Street, Caldecote, Cambridge, CB3 7NU, UK and Faculty of Informatics and
Mathematical Sciences, Department of Computer Science, Queen Mary (University of London), London
El 4NS

Despite the heroic efforts of a small group of people, like those involved with this
journal, a truly “empirical” basis for software engineering remains a distant dream.
In the current academic year I have been teaching software engineering (a double
unit module) at Queen Mary (University of London) where I have been a Professor
part-time since March 2000. Although I had been teaching courses on software
metrics and quality assurance regularly in recent years, this was the first time I had
taught a “standard” software engineering module since 1992. As the leader on a
module with over 100 students, publishers have been keen to send me all their latest
offerings. As a result, in the last few months I have received more than a dozen new
or revised dedicated software engineering text books, and around two dozen
“software engineering with Java” or “object oriented software engineering” type
books.

The good news is that, compared to the text books that were available when I last
taught software engineering the new bunch are, almost without exception, a massive
improvement. They provide students with techniques and methods that they can
actually apply to their own programs and group projects. This compares favourably
with the previous generation that simply documented a set of research ideas dreamed
up in academia and never applied successfully in practice. This makes it easier and
more satisfying to teach, and more rewarding for the students to learn (primarily
because they can learn from doing which they could not in the past). Moreover, in
this respect, the impression is that software engineering has come closer to being true
“engineering”’. However, if we accept that an empirical basis is one of the other
components that mark out a true engineering discipline, then the latest round of
books confirm that any progress we may have made in this area has had an almost
negligible impact.

The primary motivation for my own original interest in empirical software en-
gineering was the desire to see a more rational basis for decision-making. For
example, I was concerned that methods were being adopted on the basis of who,
among the methods’ proponents, shouted the loudest. In many cases methods were
being pushed, not only without adequate tool support, but without any quan-
titative justification of their effectiveness. I am not talking about the need for



196 FENTON

full-scale experiments here (something I have always been sceptical of in software
engineering anyway) but I would have expected at least a single case study on a
non-trivial system with fully documented results. In addition to decisions about
which methods to use and how, I was concerned about the lack of any empirical
basis for decisions affecting all aspects of the software life-cycle. For example: if we
use method X in its fullest form what measurable benefits are likely and at what
cost; which parts of method X could we leave out if our reliability requirements
drop by 50%; which testing strategies are most cost-effective in which contexts and
how much effort should be allocated; how many defects is it “‘good” or “‘bad” to
find in different contexts; how “big” or ‘“‘small” does a project have to be for it to
have to include or exclude various methods and QA techniques. In brief what was
needed was a set of empirically based guidelines for decision-making about all
aspects of software engineering. Sadly, this kind of empirical software engineering
is still completely missing from the new books. While they provide more focused
practical methods to use, the belief in the methods is still based on blind faith, with
no understanding of what true benefits lic ahead or what trade-offs can be made at
which phases.

So what do we need to do to ensure that the software engineering textbooks of
2010 have the missing empirical jigsaw pieces; the material that enables us to
determine (like in other engineering disciplines) not only how to use some par-
ticular technique, but what to use, when to use it, and why? One answer is, as I
hinted at above, to put behind us the mindset of believing that only formal ex-
periments can provide valid empirical results. Generally, such experiments are
prohibitively expensive and technically infeasible to set-up properly. Even in those
rare circumstances where it has been possible to run a formal experiment to test
some highly specific hypothesis, the results are in any case not accepted by those
who see them as a threat to their own ideas. For example, by using a large number
of Masters level students Finney (1998) was able to test the hypothesis that trainee
programmers subjected to an intensive training course in the formal notation Z
could understand simple Z specifications. The experiment rejected the hypothesis
showing that less than 30% of students could understand the simplest of Z spec-
ifications well enough to trust them to program a simple requirement stated in Z.
Yet, even this experiment was criticised on the basis that Masters students were not
at all representative of trainee programmers in industry. Although these students
undertook a full semester of Z training, far more than would normally be expected
of a trainee in industry, the critics who rejected the ““validity” of the experiment
still argue that “almost any programmer’ can understand Z specifications after a
1 week training course.

So what is the answer? I propose that we can gradually build up an empirical
body of knowledge, simply by providing relevant quantitative information about
real projects that we are involved with. A model of this approach was provided in
Fenton and Ohlsson (2000). Our stated intention there was “‘to provide a very
small contribution to the body of empirical knowledge by describing a number of
results from a quantitative study of faults and failures in two releases of a major



CONDUCTING AND PRESENTING EMPIRICAL SOFTWARE ENGINEERING 197

commercial system.” We did not claim that the results presented were in any sense
truly novel; on the contrary, we believe that similar analyses have been performed
(with similar results) for major systems throughout the world. However, it appears
that few organisations publish such results, even in the “grey literature” and so
there is little if any similar published data. We made no claims about the gener-
alisation of the results, but hoped that in time they could form part of a broader
picture.

The key thing to note about the study was that we had very little control over the
quantitative data that was available. We were not able to “define a metrics program”
and we were not able to dictate in any way which data should be collected. The lack
of such control is often regarded as a fundamental impediment to carrying out an
experiment or case study. In fact, it should be regarded as the norm. I am constantly
amazed that any commercial organisation would ever agree to any kind of instru-
mentation of their process that goes beyond what they do anyway as a matter of
course. In fact, if they do agree to such actions, I would be sceptical that the relevant
projects are in any way representative. What we did was to look at the data that was
available and retrospectively consider the most general and useful software engi-
neering hypotheses that we could test with the data. Hence, we focused on providing
small pieces of evidence that one day (if a reasonable number of similar studies are
published) may help us test some of the most basic of software engineering hy-
potheses. In particular we examined the extent to which the data provided evidence
for or against the following hypotheses:

o Hypotheses relating to the Pareto principle of distribution of faults and failures

la) a small number of modules contain most of the faults discovered during pre-
release testing;

1b) if a small number of modules contain most of the faults discovered during
pre-release testing then this is simply because those modules constitute most
of the code size

2a) a small number of modules contain the faults that cause most failures

2b) if a small number of modules contain most of the operational faults then this
is simply because those modules constitute most of the code size.

o Hypotheses relating to the use of early fault data to predict later fault and failure
data (at the module level):

3) A higher incidence of faults in function testing (FT) implies a higher incidence
of faults in system testing

4) A higher incidence of faults in pre-release testing implies higher incidence of
failures in operation.

We tested each of these hypotheses from an absolute and normalised fault per-
spective.



198 FENTON

e Hypotheses about metrics for fault prediction

5) Simple size metrics, such as Lines of Code (LOC) are good predictors of fault
and failure-prone modules

6) Complexity metrics are better predictors than simple size metrics of fault and
failure-prone modules.

e Hypotheses relating to benchmarking figures for quality in terms of defect densities

7) Fault densities at corresponding phases of testing and operation remain
roughly constant between subsequent major releases of a software system

8) Software systems produced in similar environments have broadly similar fault
densities at similar testing and operational phases.

For the particular system studied we provided some evidence for and against some
of the above hypotheses. We were careful to note that our study was based on just
two releases of a major system and therefore, we made no attempt to generalise the
results. However, (and this is the key point) it must surely be possible for many other
researchers to provide similar fragments of empirical knowledge so that a richer
picture can emerge.

To give a feel for the kind of results we reported, there was some support for
Hypotheses la and 2a, while 1b and 2b could be rejected. Hypothesis 3 was weakly
supported, while curiously hypothesis 4 was strongly rejected. Hypothesis 5 was
partly supported, but hypotheses 6 was weakly rejected for the popular complexity
metrics. However, certain complexity metrics which could be extracted from early
design specifications were shown to be reasonable fault predictors. Hypothesis 7 was
partly supported, while 8 could only be tested properly once other organisations
publish analogous results.

We encourage the results to be summarised as we did, in Table 1 below.

In summary, I feel that the recent progress that has been made in empirical
software engineering has failed to impact mainstream practice. Practitioners still rely
on unquantitative methods of selection and analysis for all key decisions in a soft-
ware project. I feel that the notion of formal experiments places a prohibitively
onerous and impractical burden on researchers to provide “valid”” empirical results.
On the contrary, we can build up a valid empirical knowledge base simply by
analysing retrospectively projects for which we happen to have data available. For
example, if you have worked on (or know of) a project which used UML, then
why not help the entire software engineering community by testing simple hypoth-
esis such as “‘the effort spent in producing all the diagrams was less than 10% of
the total project effort” or “less than 20% of the maintenance effort was spent
fixing bugs”. By presenting your results in the form I have shown the software
engineering text books of 2010 may yet be able to provide the missing empirical
jigsaw piece.



CONDUCTING AND PRESENTING EMPIRICAL SOFTWARE ENGINEERING 199

Table 1. Support for the hypotheses provided in the case study.

Number Hypothesis Case study evidence?
la A small number of modules contain most Yes—evidence of 20-60 rule
of the faults discovered during pre-release
testing
b If a small number of modules contain most No
of the faults discovered during pre-release
testing then this is simply because those
modules constitute most of the code size
2a A small number of modules contain most Yes—evidence of 20-80 rule
of the operational faults
b If a small number of modules contain most No—strong evidence
of the operational faults then this is simply of a converse hypothesis
because those modules constitute most
of the code size
3 Higher incidence of faults in FT implies Weak support
higher incidence of faults in system testing
4 Higher incidence of faults in all pre-release No—strongly rejected
testing implies higher incidence of faults
in post-release operation
Sa Smaller modules are less likely to be failure No
prone than larger ones
b Size metrics (such as LOC) are good predictors Weak support
of number of pre-release faults in a module
c Size metrics (such as LOC) are good predictors No
of number of post-release faults in a module
d Size metrics (such as LOC) are good predictors No
of a modules’ (pre-release) fault-density
e Size metrics (such as LOC) are good predictors No
of a modules’ (post-release) fault-density
6 Complexity metrics are better predictors than No (for cyclomatic complex-
simple size metrics of fault and ity),
failure-prone modules but some weak support for
metrics based on SigFF
7 Fault densities at corresponding phases Yes
of testing and operation remain roughly
constant between subsequent major releases
of a software system
8 Software systems produced in similar Yes

environments have broadly similar fault
densities at similar testing and operational
phases




200 FENTON

Norman Fenton is Professor of Computing at Queen Mary (London University) and is also Managing
Director of Agena, a company that specialises in risk management for critical systems. Between 1989 and
March 2000 he was Professor of Computing Science at the Centre for Software Reliability, City Uni-
versity. Norman is a Chartered Engineer (member of the IEE) and a Chartered Mathematician (Fellow of
the IMA). He has been project manager and principal researcher in many major collaborative projects in
the areas of: software metrics; formal methods; empirical software engineering; software standards, and
safety critical systems. His recent research projects, however, have focused on the use of Bayesian Belief
nets (BBNs) and Multi-Criteria Decision Aid for risk assessment. Also, Agena has been building BBN-
based decision support systems for a range of major clients.

Norman Fenton Agena Ltd, 11 Main Street, Caldecote, Cambridge, CB3 7NU, UK. Phone: +44 (0)20
7882 7860 or +44 (0)20 8530 5981 or 44 (0) 1223 263880 Fax: +44 (0) 1223 263899 Email: norman-
(@agena.co.uk, www.agena.co.uk Mobile: 07932 030084

Professor of Computer Science, Head of RADAR (Risk Assessment and Decision Analysis Research)
Computer Science Department, Faculty of Informatics and Mathematical Sciences Queen Mary (Uni-
versity of London) London El 4NS. Email: norman@dcs.qmw.ac.uk www.dcs.qmw.ac.uk/research/
radar/ www.dcs.qmw.ac.uk/~norman/.



