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In order to understand the parallel computation of optic flow,
we introduce here a novel algorithm for computing the flow
field at certain locations in the image. These locations are on
the gradient edges, which Brady calls seeds [1] . Our Curve
Motion Constraint Equation provides an additional constraint
to fully and locally estimate the flow field at seeds. Our ini-
tial computational ezperiments have used the improved local
flow as the initial input to Hildreth’s algorithm. Now we are
exploring an algorithm to perform the whole computation in
parallel.

1 Introduction

Horn and Schunck’s motion constraint equation provides one
constraint on the optic flow vector at any position in an image.
This raises the “aperture problem” in the two-dimensional
apparent motion computation. In order to fully constrain or
estimate the optic flow, they assumed that the physical world
is locally smooth everywhere, as is the three-dimensional mo-
tion field. As optical projection preserves smoothness into the
two-dimensional motion field, and also because of the similar-
ity between the two-dimensional motion field and the two--
dimensional optic flow, the optic flow is locally smooth ev-
erywhere in the image. By using the smoothness assumption
to regularise the flow field (to achieve global minimisation),
they suggested that the aperture problem can be overcome [6].
Under egomotions in which the camera moves against a static
environment, the motion field does seem to be smooth, as does
the optic flow. But the flow field in a general situation which
contains at least one moving object against a static back-
ground, will not be smooth. Also, depth discontinuities give
rise to the motion field discontinuities [15], [3], [2], [16]. In-
stead of smoothing the flow field in two-dimensions, Hildreth’s
scheme only smooths the flow along one-dimensional curves
corresponding to the zero crossings of the image. The argu-
ments for doing so are based on: physiclogical evidence [5], the
numerical conditioning of the motion constraint equation and,
the physical adequacy for assuming smoothness along edges
rather than everywhere in the image. Hildreth’s approach
is supported by some experimental results [5], [3]. Though
it is clearly one of the best schemes proposed for estimat-
ing optic flow (at least along curves), it is inherently sequen-
tial [3]. Alternatively, Scott’s Four Line Method [15] com-
putes a dense optic flow similar to that of Horn and Schunck,
but he argues that the flow field across a motion boundary
won’t be smoothed out, and furthermore, the match proce-
dure used in the scheme is local instead of a global regulari-
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sation, which overcomes the sequential computation problem
associated with Hildreth’s scheme. In practice, the match
scheme employed in Scott’s algorithm tends to propagate the
flow field into the static background region which has any
local edge structure. This gives the effect of a “wake” sur-
rounding moving objects, though it employs some novel ideas
which combines different smoothness assumptions according
to the different intensity structures into a single scheme [3].

Imposing observational assumptions, such as smoothness,
about the physical world, are aimed to overcome the aper-
ture problem by introducing another constraint. Most people
simply apply regularisation to achieve a global minimisation.
There are hardly ideas about trying to find a local constraint
which can fully estimate the optic flow only applying local
computation. Koenderinck has carried out some theoretical
investigations from biological point of view [8], [7]. Theoreti-
cally as well as practically, we have been inspired by Nagel’s
work [10], [9], [11].

The work represented in this paper is to understand the de-
gree of constraint on the optic flow computation at the seed
locations as we will describe later [1]. We claim that at the
seed locations, we can fully estimate the optic flow locally.
Similar work has been carried out by Nagel in his second or-
der Taylor series expansion of the intensity function. Nagel
showed that at “grey value corners”, the full flow can be com-
puted by his second order equation [10]. More recently, Nagel
shows that employing the smoothness assumption along the
edges as Hildreth does, or other kinds of ‘oriented smooth-
ness’ assumptions are implicitly employing the higher order of
Taylor expansion of the intensity function [11]). But, Nagel’s
method concerns how to compute the flow field in a two-—
dimensional local region. As we said before, in general, there
are flow discontinuities across the image, we believe that try-
ing to estimate the two-dimensional flow field before knowing
the boundaries of the flow discontinuity will risk the danger
to cross these boundaries in the computation. This will blur
the flow across the different objects which carry on different
motions. Therefore, we attempt to understand here the local
constraint at the locations along the edges.

2 Seeds and its constraints

The Seeds are locations of two-dimensional constraint [1], ex-
amples of which include Nagel’s “grey value corners”, or other
kinds of models based on the change of second order deriva-
tives of the intensity function [4], [12], etc. At seed loca-
tions, we have a two-dimensional constraint on the flow vector
which means that in theory, we can fully estimate the two-—
dimensional flow locally. This observation has been noted
previously [9], [11], [1], etc.

Instead of trying to recover the optic flow field everywhere
in the image by a single mechanism, we believe that there



are different schemes for estimating the flow associated with
different intensity structures. In the image, there are loci
that offer differing constraints, namely points within regions
of smooth change or constant intensity value, points of one--
dimensional intensity discontinuity which are often associated
with image edges, and points of two-dimensional discontinuity
of the intensity which are seeds, are distinguish. Furthermore,
according to the degree of the constraint, there are degrees of
locality. This means when the constraint is decreases, the
associated condition for locally estimating the full low also
decreases. There are loci in the image at which we can com-
pletely and locally compute the flow without global assump-
tions. But, as the constraint decreases, we need a different
schemes for estimating the flow in those less constrained lo-
cations which can not be done locally. Therefore, the parallel
computation of two-dimensional apparent motion can not be
employed throughout all stages of the computation. This sug-
gests that the computation of the optic flow is a multiple level
mechanism in the sense that different levels are associated
with a certain degree of well-conditioning as well as of paral-
lelism. The question of parallel computation of visual motion
is to maximally employ the degree of parallelism, which are
different in different stages of the computation, rather than
trying to employ a single parallel computation mechanism all
the way through the motion estimation. Similar suggestions
are to be found in physiological and psychological experiments
[13], [14].

3 Mathematical structure of the
edge flow

We study the conditions in which we can locally compute both
components of the optic flow (full flow) along an edge.
We start from the motion constraint equation (m.c.e):

VI p+Ii=0 (1)
which derives from an assumption of temporally constant

intensity. VI is the first order spatial gradient vector, p is the
optic flow vector, which is defined as:

p=[ dz/dt dy/dt |’ (2)

and I, is the temporal gradient at a pixel. The relationship

between the spatial and temporal gradients and the optic flow
vector is then:

I
N {3]
where N = VI/||VI|| is the unit vector in the direction of
the intensity gradient.

As we said before, equation 3 imposes one local constraint
on the two-dimensional optic flow vector. If the norm of spa-
tial gradient ||V || is small, this computation will be poorly—
conditioned. This is the numerical argument in favour of edge
motion estimation. Therefore, we restrict our attention to
those image loci which have high first-order spatial gradient,
edges (VZI). At such an edge point, an edgel, the intensity
gradient is orthogonal (in the image plane) to the (tangent to
the) edge.

To understand the mathematical structure of the flow field
along an edge, we examine an edge in a temporal sequence of
images. In one representation, edgels are addressed by their
image coordinates (z,y); and in another representation, the
same point is accessed by its distance s along the edge. Adding
the time parameter ¢, we denote the quantities that feature in
our analysis as follows:

N-p=-—
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I(z,y,t) : intensity at a point in the image.
I(s,t): intensity of an edgel.

¥(s, 1) : an edge.

z(s, 1) : x coordinate of a point on the edge.
y(s, 1) : y coordinate of a point on the edge.
VI: spatial gradient of a pixel.

N: unit vector in the gradient direction.
T unit vector orthogonal to N.

W velocity vector of a pixel.

H: Hessian matrix of a pixel.

The position along an edge is given by s, at any instant
time i;, and at any particular point on the edge, we have:

T= %}!tﬂi

In other words:

where v =7(s, 1)

T =[ 8z/8s dy/ds |" (4)

After these statements have been cleared, it can be shown
what the tangential component of the flow vector along an
edge should be. First we have the Taylor expansion of the
optic flow along an edge, which is:

*u

As+a

pn(s + As) = pu(s) + =—=As’ +0(As%)

Similarly, the Taylor expansion of VI and I, along an edge
should be:

2
VIi(s + As) = VI(s) + EA s+ aawm +0(As%)
al 8’1
Ii(s + As) = I(s) + —'A +a—‘A + O(As®)

Ignore the triple and higher order of As in the above equa-
tions, we have:

*u

op
p(s+ As) = pu(s) + EAS-F 3357 =As 2 (5)
2
VI(s + As) = VI(s) + awm + aailAs’ (6)
I,
Ii(s + Os) = I (s) + -Ei—‘a s+ %ﬁs (7N

Now, consider the motion constraint equation in the neigh-
bourhood of a point at distance s along the edge, which is:

VI(s+ As) - p(s+ As)+ I(s+ As) =0 (8)

Substitute equations 5, 6 and 7 into this neighbourhood
m.c.e; then, ignoring the triple and higher order of As gives:

vl al:

VI ap , 8°VI a‘-’ 9%, _
+ ds 'E‘H‘ ds? +VI.882 32)(A) = &

The partial derivatives of intensity and velocity with re-
spect to a spatial coordinate in two-dimensions are constant.
Therefore, in order to satisfy this equation, the coefficients of
zero, first and second order in As should respectively be 0.
This leads to:

VI p+I =0 (9)
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Equation 9 is the motion constraint equation. Equations 10
and 11 provide two new relationships between the intensity
and the flow along an edge. What do equations 10 and 11
tell us ? After some mathematical manipulations on the first
order equation 10, we derive the following:

(TTHN)(N - p) + (TTHT)(T - 4) - (T"Hu) =0  (12)

Similarly, from the second order equation 11, we obtain:

(TTHN){(TTHu) + (V1 - T)} =0 (13)
where VI is the temporal gradient of the spatial gradient.
Clearly, equation 12 provides no additional information. How-
ever, equation 13 links the tangential and normal components
of the optic flow along the edge. This will be seen in more
detail from the following.
From equation 13, we have either:

TTHN=0 or (T"Hp)+(VI-T)=0

If (TTHN) is zero, then either HT is parallel to T or, it
is 0. Now:

avI
ds

a||v1|| 8N
5 NIV
= (TTHN)N +(TTHT)T = HT

and so in general, (HT) is not parallel to T, nor is it equal
to 0. In other words, generally we have the Curve Motion
Constraint Equation (c.m.c.e) as following:

(TTHN)(N - p) + (TTHT)(T - p) = —(VI; - T)  (14)

Is there any special case for which TTHN vanishes? As:
(TTHN)N 4+ (TTHT)T = HT
which means if,
TTHN=0 = HT=(T"HT)T

As we have:

1

— e T
=o't BT

which & is the curvature of the edge, therefore:

HT = —«||VI|T

If HT is parallel to T, TTHN equals to 0. In fact, we found
analytically that this situation happens along a circular edge.
This may explain why we can not compute a circular object’s
rotation about its centre, for which all the full flow vectors on
the edge only have tangential component.

Except for the case that HT is parallel to T, furthermore,
being 0 — in other words, edge is a straight line, also makes
TTHN vanishing. This gives:

0=[ 8L/3s 8I,/9s |" = HT (15)

It says that both 8I./8s and 8I,/3s are equal to zero,
which gives the following:
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1. At first, equation 15 can be more explicitly written as:

R

IS‘UIU = IWI: ] (16)

which means:

Loy — Liyle =0, Ipyly— Inyle =0
This obviously gives us: IzzIyy = I2,. Therefore, where
the edge is straight, we have:

detH=10

2. Secondly, as:
(TTHu) + (VI - T) = (VI - T) #0

which means where the edge is straight, c.m.c.e doesn’t

hold.

By this stage, we have determined a relationship between
the edge’s optic flow and the corresponding intensity struc-
ture. This can be briefly summaried as:

conditions if we assume: in general, the second order deriva-
tives of the intensity function exist locally, then we have:

1. To require an edge being straight, means that the
determinant of the local Hessian matrix equals to
zero.

2. Theoretically, we can estimate both components
of optic flow locally along edges wherever the edge
is not straight, though we still can not estimate
the circular objects rotating according to its cen-
tre. Practically, we need to concern ourselves with
the numerical condition of the c.m.c.e. It is very
similar to the situation that arises in using the
m.c.e. For the m.c.e, it is judged by the norm of
the gradient. For the c.m.c.¢, it is judged by detH.
In fact, detH = k1x2(EG — F2), in which E, F
and G are the components of the first fundamen-
tal form [12], which suggested that the intensity
surface shape can be basically classified into three
types based on the value of detH. That is:

detH < 0, hyperbolic point;
detH > 0, elliptic point;
detH = 0, parabolic point.

The parabolic points are associated with the
straight edges in the intensity surface, but both
hyperbolic and elliptic points are associated with
seed locations.

3. Furthermore, where the detH equals to zero, the
optic flow estimation reverts to be an under--
determined problem.

What can deduce about the c.m.c.e 7 First of all, we can
write the c.m.c.e. in a more general form as: ¢(T - p) +
@(N - p)+ XA = 0. So the equation gives the correct solution
in two kinds of extreme situations (figure 1).

Secondly, we see that Hessian matrix plays a central role
here. In practice, we only can compute the T - yp where H is
well-conditioned. As H is associated with the surface curva-
ture of the intensity function [17], [10], [12], large Hessian de-
terminant is associated with the loci of local maximum surface
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Figure 1: Two extreme situations for the flow flied com-
putation.

curvature on the intensity surface, which are the loci of two--
dimensional constraint. Therefore, they correspond to loci of
seeds, where we can give a full value for the optic flow. Though
it seems to be similar to Nagel’s grey value corners, we derived
here an explicit connection between the structure of intensity
on the edge and the constraint for computing the optic flow at
these locations. This connection generalises Nagel’'s method
by giving explicit detail about not only dealing with the flow
of two-dimensional constraint loci — grey value corners; but
also dealing with the flow of one-dimensional constraint loci
— edges, and about the degree of numerical reliability for
local flow computation on these edges.

4 Improved local flow for edge’s
flow

Our first application of c.m.c.e is to give an improved local
flow as the initial data for Hildreth’s scheme. First we give
an improved model which is based on the Hildreth’s original
approach but consider the new local information from the
c.m.c.e.

In general, there will be error in both the local computa-
tion of N - s, which is denoted as p*, and T -y denoted as
uT. This is caused by image quantisation error and image
noise, etc. Therefore, in practice, we require only that the
flow obey these local constraints approximately. Combining
this approximate requirement with the general smoothness as-
sumption along the edge, we have the following functional to
be minimised:

o = [ty + &
+a /[N cp—pt)ds

+0 [12 u-u"Fas (17)

The parameter a is a weighting factor which expresses the
degree of confidence in the local normal flow from the motion
constraint equation. f is another weighting factor for the local
tangential flow. We set o to be a constant, but set 3 to be
a function of the local Hessian matrix which is varying along
the edge.

detH
€

B =

132

The function represents two aspects of error sources in the
tangential flow computation, where € expresses the degree of
confidence in the computation of the Hessian matrix itself, and
the determinant of Hesslan represents the degree of confidence
in using the c.m.c.e. In general, € should be the condition
number of the Hessian matrix:

e =|[H|[IH™|

where € equals to 1 corresponding to well-conditioned, and
oo corresponding to singular. Also, in general, § should be
smaller than «, as the error in the computation of second
order derivatives are bigger than in the first order derivatives.
The discrete function for the first, second and third term in
the functional of equation 17 are as follows:

0 = Z[(F‘I; = ﬂ'zi...l)? + (F‘&ri = p’&‘i-—l}Q]

Hpz, = #2.)° + (Byy — ya)’]

n
0, = “Z[in Nz, + py, Ny, — FIJL]2

=1

n

D lbeiTe, + pyi Ty = ] P

=1

By = detH

From ©;, ©; and ©3, we have the discrete formula for
equation 17 as:

P=0,+060240; (18)

Now, the question of minimising equation 17 leads to the
question of finding a set of z and y components of the flow,
which minimise the discrete function ® in equation 18. This
gives a set of 2n linear equations, which are:

8% __ 8% __ 3
m—os Bpy, ! ]-S’Sn' (]g}
to be solved. This leads to:
detH
[4+ 2“(N$i]2 + 287(2—‘15)2]#1:.' — 2z,
detH
—2{11.-_1 + [2CI‘NI"N3“ + 2 CE T:iTyi]IuUi
= 2Nt + 22T, T
1<i<n.
and,
detH
[4+ QQ(N!J;')Z +2 » (Tye)z]#‘-yi — 2pyip,
detH
—2py,_, +[2aNz, Ny, +2 c T, Ty, lus,
detH
= 2aNy,pi +2 ec Tyni
1<i<n

These two equations constitute an improved model relative
to Hildreth’s original scheme [5]. It uses more local informa-
tion both from m.c.e. and c.m.c.e. to give a faster algorithm.
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Figure 2: Synthetic image sequences for the experiment
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Figure 3: Synthetic translation — 2 pixels down the y
direction.

5 Experimental results

In order to show that our model works on practical images,
we show the results of some initial experiments. First we give
some results which are for testing the c.m.c.e. Secondly, we
show some results from our improved version of Hildreth’s
algorithm.

We first explain the pictures we use here. The aim of this
part of the experiment is to show whether the equation works
based on the degree of curving on the edges which we have
shown theoretically. Therefore, we try to use a kind of image
which has less influence from other aspects, such as noise in
the image which leads to errors in edge detection and so on.
This leads us to use a sequence of synthetic ellipse images
which has different curvature along its boundary which is go-
ing to give us an edge that can be used for the experiment
here. The image sequences include translation, rotation and
deformation (see figure 2). The size of images is 128 x 128.

The resulting flows are shown in figures 3, 4, 5 and 6, which
each figure also shows a result from Hildreth’s method, but
all of them are about fifteen times faster. We note that most
time consuming in the computation spends on computing all
the derivatives for which we are using relatively large masks
(7% 7 and 9 x 9) because the computation of the second order
derivatives are very sensitive in general. On the other hand,
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Figure 4: Synthetic rotation — 3° clockwise.
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Figure 5: Synthetic deformation — 2 pixels in all direc-
tions.

the computing time in Hildreth’s method is mostly spent in
the iteration stage which is inherently sequential. Therefore
we can further speed up the seed motion computation consid-
erably and easily by using a hardware image processing array.
In figure 3, we have a translation in which the local normal
flow of the loci of seed are useless. The recovered local tan-
gential flow complement the local full flow rather well. This
associates with the two extreme situations we mentioned be-
fore. Figure 4 and 5 give the results from a rotation (three
degrees clockwise). The tangential flow gives a reasonably ac-
curate contribution to the full flow at the seed loci. Finally,
figures 5 and 6 show two flows associated with a motion of two
pixels deforming in all directions, and a motion of rotation in
three degrees clockwise and translation of two pixels in both x
and y directions. In these more general situations, the c.m.c.e
still gives a quite reasonable local tangential flow.

We have demonstrated the adequacy on sequences of syn-
thetic images. But these are images that have simple struc-
ture. For real images, the situation is going to be changed
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Figure 6: Synthetic general motion — translating 2 pixels
in both x and y directions; also rotating 3° clockwise.
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Figure 7: Results from the improved algorithm.

simply because on one hand there are lots of noises both from
the original image, and from the image quantisation; and on
the other hand, the computation of second order derivatives
are well known to be sensitive to noise. Therefore, we consider
the local tangential flow as an approzimate local constraint for
the full flow computation, as in equation 17 rather than as a
precise calculation. The result from applying our improved
Hildreth’s method on the real image sequence is shown in fig-
ure 7. This result didn’t show us a great change in the time
consuming (about half the iterations as Hildreth’s does). The
reason can be explained as there are not enough seeds along
the edges; also we don’t take their tangential flow as boundary
conditions which turns out that the seed’s contributions are
buried in or smoothed by the non-seed’s normal flow. This
leads to our following consideration of an alternative way for
applyving the c.m.c.e.

Currently, we compute a fairly good approximation to the
local tangential flow at the seed loci, or we compute the tan-
gential low everywhere on the edge by setting the threshold of
detH to zero, which will give us a very low confidence about
the tangential flow at the loci of low detH. Consequently,
our current investigations start from finding how to build up
the local tangential flow all along the edge by propagating,
instead of directly using equation 14, the tangential flow at
the loci of seed to the loci of low detH. This should give us a
more confident tangential flow at those loci of detH. Although
these propagated tangential flows along the edge still can only
be approximate, they will have greater confidence. We are
currently exploring the possibility of using wave-diffusion pro-
cessing ( based on the assumption that the change of tangential
flow is continuous along the edge) to give us a fast propaga-
tion along the edge. This processing will again be inherently
parallel. After we have the tangential flow everywhere on the
edge, we combine them locally with the normal flow, to give
us a very close approximation to this edgel’s full flow. By this
stage, we only need a few final iterations to smooth the whole
flow globally to overcome the initial error that derives from
noise rather than from insufficient constraint. In this way, we
use the local computation as much as we can to minimise the
involvement with the global computation. Therefore, most of
our computation can be done in parallel. The reasons for do-
ing this is to understand how we can propagate the reliable
optic flow into less constrained regions and at the same time
how much parallelism can be achieved. The ultimate point
here is to understand the multiple level optic flow computa-
tion structure. To answer the questions such as how much
parallelism is associated with a certain level’s computation,
how we can maximally apply it, and finally, how much par-
allelism is in the whole optic flow computation will bring us
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a better understanding of the parallel computation of visual
motion.
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