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Abstract

Modelling the appearance of 3D objects undergoing large pose variation relies on recovering correspondence of both shape and texture
across views. The problem is hard because changes in pose not only introduce self-occlusions hence inconsistent 2D features between views,
but also cause non-linear variations in both the shape and texture of object appearance. In this paper, we present an approach for establishing
structured sparse correspondence between face images across views using non-linear shape models. We extend the non-linear shape models
to dynamic appearance models of both shape and texture across views. For non-linear model transformation, we adopt Kernel PCA. For
bootstrapping appearance alignment at different views, we introduce a generic-view shape template. We show that Kernel PCA constrained
the dynamic appearance model and eases model fitting to novel images. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been shown in recent years that it is possible to
faithfully represent the 3D structure of an object with only
2D views of the object. This is not only psychophysically
more plausible but also computationally more advantageous
over conventional 3D models [30,33,34]. Such a multi-view
based 2D representation, however, assumes that dense
correspondence between views can be established. This
can be non-trivial especially when an object such as a
human face appears in different views or when faces appear
differently due to the change of identity. Ambiguities often
exist in defining correspondence for all points in the images
of different appearances of an object, even at a single view.
For objects such as human faces, although the overall struc-
ture of two faces is likely to be the same (i.e. two eyes and
one nose above a mouth), the fine scale structure can differ
significantly. Even though dense correspondence cannot
always be defined, attempts have been made and the
methods tend to rely on the computation of optical flow.
They are inevitably computationally expensive and usually
require human intervention in order to ensure acceptable
performance [2,36]. Due to the difficulty and the likely
prohibitive cost from computing dense correspondence,
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these models are mainly designed for face synthesis and
applications in computer graphics.

Correspondence can be made more consistent and robust
at a sparse level where there is common structure [17]. In
particular, sparse correspondence between a carefully
chosen set of 2D feature points of an object can be more
reliable if the feature points are selected to form the salient
structure, i.e. shape of the object. For example, at a fixed
view such as frontal view, the non-rigid 2D shape of a face
can be modelled using a linear active shape model based on
a set of facial salient feature points and their local grey-
levels [7,9,23]. Fig. 1 shows different selections of facial
feature points adopted for correspondence by various face
models proposed in recent years.

In the presence of large view variation, self-occlusion
unfortunately restricts such linear shape models to a single
or narrow view. This is because a face undergoing rotation
in depth (change in view or pose)' results in a significantly
non-linear transformation of its shape in the image space. To
overcome this problem, there have been a number of solu-
tions proposed largely based on explicit 3D pose estimation
and piecewise view-based models. For example, geometric

' In this article, we refer view-sphere as a collage of views spanned by
continuous variations in both yaw and tilt of a human face. In this context,
view is also referred to as pose. In the rest of this article, we are more
concerned with pose or view change caused by yaw variation which is
far more significant than that of tilt.
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Fig. 1. Different salient facial feature points selected for establishing corre-
spondence between face images. From left to right, correspondence is estab-
lished between four [29], 14 [22], 31 [38] and 36 [11] points, respectively.

models were exploited for pose estimation through utilising
a 2D affine-model of image positions of the mouth and eyes
and by adding the nose-tip position across views [15,16].
Alternative models for pose estimation have also been intro-
duced based on affine transformation of holistic templates
[24], and by measuring similarity to prototype views
[19,32]. Examples of piecewise view-based models include
Kruger et al. [21] who used elastic graph matching of
connected nodes of Gabor filter ‘jets’ to locate and estimate
face pose. Different graph models were used for different
poses, leading to a computationally expensive approach.
Other piecewise models of multiple views have also been
introduced using view-based eigenspaces [13,29], mixture
models [8] or support vector machines (SVM) [27].

In this work, we describe a method for effectively corre-
sponding a single non-linear dynamic face appearance
model across views. In Section 2, we outline the need for
corresponding active shape models (ASMs) across views
before we introduce Kernel PCA as a technique for learning
non-linear model transformations in Section 3. This is to
extend the linear ASMs to non-linear dynamic shape models
for establishing structured sparse correspondence across the
view-sphere. In Section 4, we describe an effective algo-
rithm for fitting a non-linear face shape model to novel
images and simultaneously recover their poses. Such a
shape model captures all possible 2D shape variations in a
training set and performs a non-linear model transformation
during fitting. In Section 5, we further extend the non-linear
shape model to a dynamic appearance model of both shape
and texture. We introduce a generic-view shape template for
bootstrapping the alignment of dynamic appearances at differ-
ent views. Kernel PCA is extended for non-linear model trans-
formation of both shape and texture arising from large pose
variations and the regression required for model fitting is
eased as a result. Experiments are shown in Section 6 before
we conclude with possible future work in Section 7.

2. Shape correspondence at a narrow view: Active shape
models

The eventual role of correspondence in a view-based
representation is to bring not only the shape but also the

appearance of an object into alignment® [3,13,37]. To this

2 Here alignment does not only limit to linear cases.

end, one needs to model both structural (shape) and statis-
tical (texture) knowledge about the object. Statistical
knowledge can only be effectively exploited if structural
constraints are sufficiently satisfied through establishing
correspondence. Beymer [1] used a shape representation
in which dense correspondence is required for all the pixels
of a face image before texture warping is performed. This is
achieved by computing optical flow which registers all
the pixels of a face with those of a mean face. The shape
of the new face is modelled by displacement vectors from
the shape of the mean face. This shape information is then
used for performing a simple 2D warping in order to gener-
ate its shape-free texture [12]. When a novel face image is
presented to the model, the shape and the texture of the face
are recovered based on an iterative optimisation fitting
algorithm. The accuracy of this feature alignment obviously
depends on the optical flow estimation and it is necessarily
expensive. To overcome the problem, sparse correspon-
dence can be adopted. However, in order to constrain the
degrees of freedom in corresponding a set of sparse salient
feature points extracted from different images, one should
avoid corresponding every pair of individual feature points
independently [13,28]. To this end, prior knowledge on any
plausible shapes that can be formed by the feature set is
needed in order to establish holistic shape based correspon-
dence. It is also desirable if such prior knowledge can be
learned from examples. This is the essence of linear ASMs.

Cootes et al. [7,9,23] have shown extensively that the 2D
shape of objects can be effectively modelled using linear
ASMs. Such linear shape models have also been extended
to facilitate representation of appearance (both shape and
texture) change using active appearance models (AAM) [6].
An ASM consists of a point distribution model (PDM)
aiming to learn the variations of valid shapes based on a
set of salient feature points (landmarks) that best represent
the shape of an object, and a set of local models of grey-
levels around these landmarks. For model building, a set of
training images are warped into a mean shape which brings
the landmarks into alignment. A shape-free texture vector
can then be obtained by 2D warping using methods such as
the Bookstein’s algorithm based on thin plate splines [22] or
linear interpolation [10]. While the accuracy of this warping
is precise for the landmarks, it is only approximate for all
other pixels in between and their accuracy depends on the
number of landmarks used and their relative positions. After
warping to the mean shape, each training example image
can be represented as a shape vector and a shape-free texture
vector [6,12]. The elements of the shape vector are the
2D image co-ordinates of the landmarks. The elements of
the texture vector are the intensity values of the warped,
shape-free image pixels. The PDM and local grey-level
models are then learned using these shape and texture
vectors as examples. The computational difficulty now is
to perform model fitting which requires on-line correspon-
dence to be established between a model and a novel image.
The use of a mean shape avoids the need to compute many
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Fig. 2. The 2D shape of a face across views from —90° to +90° is given by a set of 80 facial landmarks and their corresponding local grey-levels. However, the
local grey-levels around the landmarks vary widely in this case. This is highlighted for one of the landmarks .7, which clearly cannot be established across

views solely based on local grey-levels.

correspondence maps. However, matching still entails a
relatively expensive search over parameters of variations
in shape and texture. The match can be based on models
of the local appearance of the landmarks [38] or along
curves joining the landmarks [14,22,25].

Crucially, linear ASMs are based on a number of implicit
assumptions: (a) the shape of the object of interest can be
defined by a relatively small set of explicit view models, (b)
the grey levels around a particular landmark are consistent
for all the views of the object and can be used to find corre-
spondences between these views and, (c) the shapes at
different views vary linearly. However, assumptions (b)
and (c) can be easily violated when shape variations are
caused by significant changes in pose, as illustrated by the
example in Fig. 2.

Hence, whilst ASM can be used to model and recover
some changes in the shape of an object, it can only cope
with largely linear variations. When the valid shape region
(VSR) in the shape space is non-linear, as in the case when
large pose variations are allowed, the PDM of an ASM
requires non-linear transformations. The problem can be
partially addressed using combination of linear components
[8,20]. For instance, a single ASM was shown to cope with
shape variations from a narrow range of face poses (turning
and nodding of *=20°). Non-linear variations caused by
changes in pose and self-occlusions can be captured using
the combination of five different linear models [23]. How-
ever, the use of linear components not only increases the
dimensionality of the model but also can potentially intro-
duce invalid shape variations [5,28]. Although the dynamics
of valid non-linear model transformation can be captured by
a set of structured linear models using non-linear principal
components analysis (PCA) such as cluster based on-linear
principal component analysis [4] and hierarchical PCA
[20,28]. This approach, however, does require a rather
large database for learning the distribution of the linear
subspaces. An alternative approach is Kernel PCA.

3. Learning non-linear transformation in model space:
Kernel PCA

Kernel principal components analysis (KPCA) is a non-
linear PCA method recently introduced by Scholkopf et al.
[31] based on SVM [35]. The essential idea of KPCA is both
intuitive and generic. In general, PCA can only be effec-
tively performed on a set of observations that vary linearly.

When the variations are non-linear, they can always be
mapped into a higher dimensional space, which is again
linear. If this higher dimensional linear space is referred
to as the feature space (%), KPCA utilises SVM to find a
computationally tractable solution through a simple kernel
function which intrinsically constructs a non-linear mapping
from the input space to % . As a result, KPCA performs a
non-linear PCA in the input space.

More precisely, if a PCA is aimed at decoupling non-
linear correlations among a given set of shape vectors x;
through diagonalising their covariance matrix, the covari-
ance can be expressed in a linear feature space 7 instead of
the non-linear input space, i.e.

1 M
C= 2> Px)Px)’ )
j=1

where @(-) is a non-linear mapping function which projects
the input vectors from the input space to the & space. To
diagonalise the covariance matrix, the eigen-problem Ap =
Cp must be solved in the # space. As Cp = (1/M)
Zjﬂil (P(x;)p) @(xj)T, all non-singular solutions p with
A #0 must lie in the span of &(x,),..., D(x,,). This
eigen-problem is equivalent to

MP(x)-p) = (P(x)-Cp) 2)

for all k = 1, ..., M and there exists coefficients «; such that

p= iaid’)(xi). 3)
Substituting Eq. (2) with Eqgs. (1) and (3) gives
A fl o (D(x)- DIX))
TR
= ; o (Zl (@(xk)-dxx,»»«b(x,)«b(x,-))) )

It is important to note that this eigen-problem only involves
dot products of mapped shape vectors in the feature space
Z . This is the raison d’€tre of this method. Indeed, the
nature of structural risk minimisation (SRM) suggests that
mapping @(-) may not always be computationally tractable
even if it exists [35]. However, it needs not be explicitly
computed if SRM is implemented using SVMs. Only dot
products of two vectors in the feature space are needed.
Even so, since the feature space has high dimensionality,
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Fig. 3. Conceptually, KPCA performs a non-linear mapping @(x) to project an input vector to a higher dimensional feature space # (step 1). A linear PCA is
then performed in this feature space giving a lower dimensional KPCA space based representation (step 2). To reconstruct an input vector from the KPCA
space, its KPCA representation is projected into the feature space (step 3) before an inverse @(x) mapping is performed (step 4). Computationally, however,
none of the four steps is performed. The mapping is in fact carried out directly by kernel functions Y ; ak(x, X;) between the input space and its KPCA space,
shown as the dashed line in the diagram. For reconstruction, this kernel-based mapping is only approximated. Optimisation is required in the KPCA space in
order to find a best match between the model and the KPCA representation of the input vector.

computing such dot products could still be computationally
expensive if at all possible. An SVM can be used to avoid
explicitly performing either mappings @(-) or the dot
products in the high dimensional feature space % .

Let us define an M XM matrix K where k;=
D(x;)-P(x;), Eq. (4) can then be rewritten as

Mia = Ka (5)

where a = [al,...,aM]T. Now, performing PCA in the
feature space # amounts to resolving the eigen-problem
of Eq. (5). This yields eigenvectors al, ...,aM with eigen-
values A = A% = ... = \M, Dimensionality can be reduced
by retaining only the first L eigenvectors. The principal
components b of a shape vector x are then extracted by
projecting @(x) onto eigenvectors p* where k = 1,...,L

M
b =p"P(x) = D af(P(x;) Px)) (6)
i=1

To solve the eigen-problem of Eq. (5) and to project
from the input space to the KPCA space using Eq. (6),
one can avoid computing either the dot products in
the feature space or the mappings through constructing
a SVM (Fig. 3). This is achieved by finding a kernel
function when applied to a pair of shape vectors in the
input space, it yields the dot product of their mapping in
the feature space

A (x,y) = P(x)-D(y) (N

There exists a few kernel functions which satisfy the above
criterion [35]. This includes the Gaussian kernel where
A(x,y) = exp(—|x — y||*/2¢?). We adopted the Gaussian
kernel function after experimental evaluation which
concluded that it performed better than the step function.
This SVM kernel function effectively provides a low
dimensional Kernel-PCA subspace which represents the
distribution of the mapping of the training vectors in the
high dimensional feature space & . As a result, non-linear

transformation in the input space can be performed by
reconstructions from the KPCA subspace. However, this
process can be problematic [26]. The vectors in the feature
space & which have a pre-image in the input space are those
that can be expressed as a linear combination of
D(xy),..., D(x,,). However, if the reconstruction in Z is
not perfect, there is no guarantee to find a pre-image of
the reconstruction in the input space (Fig. 3). Especially if
dimensionality reduction is applied, the reconstruction from
the KPCA space to % is only an approximation. Therefore
the reconstruction (X) of an input vector (x), whose principal
components are truncated to the first L components, is
approximated by minimizing

|D%) — PLd(x)| (8)

where P, is a truncating operator. To solve this optimisation
problem, there exists techniques tailored to particular
kernels [26].

4. Shape correspondence across views: Dynamic shape
models

Existing ASMs of faces exhibit only limited pose vari-
ations due to its linearity. One implicit but crucial assump-
tion of the existing method is that correspondences between
landmarks of different views can be established solely based
on the grey-level information. However, when large non-
linear shape variations are introduced due to changes in
object pose, local grey-level values around landmarks are
also view-dependent.

In the case of face varying from profile to profile, the
strongest contextual information is given by pose. Hence,
we augment the shape vector in PDM using pose 6, i.e.
(X[> Y15 XN, VN, 0) Where (x;,y;) are the coordinates of
the ith landmark. Similarly, the model for the local grey-
levels (LGLs) around each landmark is a concatenation of
the grey-levels along the normal to the shape contour and
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Fig. 4. Top: example of training shapes. Bottom: the mean shape at frontal view.

the pose of the face. It is worth pointing out though that in
general, care needs to be taken, through appropriate weight-
ing, in the construction of a hybrid representation using
different sub-components. This is especially true if the
distribution variance among different sub-spaces is very
large [5,28]. Both the PDM and the LGLs are built using
KPCA. Model fitting is an iterative process starts from the
frontal view of the shape located near the object in the
image. Notice that it is better to start from a specific view rather
than the mean shape, as was adopted by Cootes et al. [9]. This
is because due to large shape variations, the mean shape across
views is no longer a valid shape, as shown in Fig. 4.

To start model fitting, it is assumed that a rough position of
a face in the image is known. However the pose is unknown
and the fitting process recovers both the shape of the face and
its pose. The computation is performed as follows:

1. To find plausible correspondences of landmarks between
views, augmented local grey-level models are used. To this
end, the KPCA reconstruction of the grey-level vector is
minimised along the normal to the shape. To compute the
KPCA reconstruction of a vector, one first projects this
vector to the KPCA space using Eq. (6), obtaining the
kernel principal components (b). The reconstruction is
then performed by minimising the norm given in Eq. (8).
During the first iteration the pose of the object is unknown
therefore the reconstruction error must also be minimised
with respect to poses. This process yields an estimation of
both the landmark loci and the pose for each landmark. The
newly estimated pose is then the average pose of all the
landmarks. This pose is to be used to constrain the shape
within the VSR in step 3.

2. The estimated shape is aligned following Cootes et al. [9].

3. To constrain the estimated shape within the VSR, it is
projected to the shape space using a pose augmented
non-linear PDM given by Eq. (6), constrained to lie within
the VSR by limiting the values of b [9] and projected back
to the input space using Eq. (8). This yields a new esti-
mated shape. Its pose will be used to locate the correspon-
dence of the landmarks in the next iteration. Repeat step 1
until convergence.

5. Learning to transform dynamic appearances across
views

We now extend the non-linear shape models to appear-

ance models across views with which both non-linear shape
and texture deformations are modelled using KPCA. First,
let us introduce the notion of a generic-view 2D shape
template for bootstrapping appearance alignment at differ-
ent views for training. In principle, the problem of missing
(hidden) features between different views due to self-
occlusion can be addressed in two ways. The hidden
features can be reconstructed using the information of the
visible features. This method may not be feasible without
resorting explicitly to 3D information. Alternatively, the
hidden features can be explicitly represented by a generic-
view 2D shape template without regenerating their texture.

Suppose a shape X is composed of a set of N; landmarks
x; and the texture v is composed of N, grey-level values v;
I" v=[v vyl

€))

To bootstrap the alignment process at different views, a
generic-view 2D shape template, denoted by Z, is intro-
duced with which the landmarks are to be aligned view-
dependently. The shape of any single view X is composed
of two types of landmarks: (a) X, the outer landmarks
which define the contour of the face and (b) X|,, the inner
landmarks which define the position of facial features such
as mouth, nose, eyes and eyebrows. The generic-view shape
template Z is computed based on M training shapes

X; =[xyl X =[x XNS]T»

Zin = Gin(Xh -~-7XM)v Zoul = Gout(le~--7XM)7
(10

7= ¢7K(Zout7 Z;,)

where J(-) is an operator which concatenates an outer
shape and an inner shape, yielding a complete shape.
Once Z is obtained, the shape X and its associated texture
v can be aligned, giving an aligned shape (X) and its corre-
sponding aligned texture (V)

X =F(X,Z), v=ww,X,X) (11)

After this initial alignment, shape transformation is required
in order to align all inner landmarks at different views. This
is because as pose changes, the outer landmarks, which
define the contour of the shape, would ‘travel’ on the face.
Therefore, the alignment error e; of face i only takes into
account the inner landmarks

e; = |Zi — Xl (12)

In general, the minimisation of this generic error function
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Fig. 5. (a) A generic-view shape template is based on aligning shapes from
two profiles and the frontal view with respect to a single or a set of inner
landmarks. (b) Examples of aligned appearances of both shape and texture
at different poses using just one inner landmark assigned to the nose-tip.

can be computationally expensive with no guarantee of
convergence. To avoid this problem, we model this non-
linear transformation indirectly through learning using
KPCA.

Let us first compute the generic-view shape template for
the initial alignment of the training data using the following
F(), W(), Gi,(+) and G, (+) functions:

(1) The training shapes at each view are scaled according
to the distance between the chin-tip and the nose-tip in the
generic-view shape template (Fig. 5). The shapes at each
view are aligned with respect to the nose-tip by translating
and scaling individual landmarks of a shape X to X

L (X xp)

;= s i=1,...,N, (13)
||Xk - Xz||

where k refers to the landmark at the nose-tip and / to the
chin-tip.

(2) These aligned shapes at different views are superim-
posed to form the generic-view 2D shape template using, in
a simple case, the mean of the inner landmarks and the
extreme outer landmarks of the M training shapes

1 ¥ N
Z;, = Gy,() = ” Z Xin,)» Zourj = Gou() = Xy
=

if %;; & {Xous N N Xoum} Vi=1,..M, j=1,...,N,
(14)

where X;; {Xom,l N--N XOULM} if a point X;; on the face
is not in the overlapped area of all the training shapes. This
generic-view shape template can be formed by the full set of
outer landmarks but only one inner landmark. The outer
landmarks are the extreme landmarks of the superimposed
shapes. In this simple case, the mean of the inner landmarks
can also be simply replaced by the tip of the nose. In general
however, instead of the mean, more inner landmarks can be
used for increased robustness with added computational cost
[13].

This initial alignment process is shown in Fig. 5. To align
both the shape and texture to the generic-view shape
template, a fast affine transformation is applied. For the
simple case of one inner landmark assigned to the nose-
tip, the aligned shape and texture are computed by simply
performing scaling and translating according to the generic-

view template following Egs. (13) and (16). For a more
general case when there are more than one inner landmark,
we define the scaling and translation as

Vi=1,..,N, (15)

Y, =V, ifp, CX
. VpEZ (16)
if p; ¢ X

VPi =0

where v, denotes the grey-level value at pixel p;. Examples
of alignment using just one inner landmark are shown on the
right in Fig. 5.

To utilise the generic-view shape template, all feature
points including the hidden features are made explicit to
the model all the time: a special value of grey-level is
used to denote hidden points (0 or black). However, the
hidden points are only approximate. For instance at 50°
view, the hidden points behind the bridge of the nose are
not treated. In addition, the alignment performed is coarse:
e; = 0 is only true for the nose-tip. The other features are
only approximately aligned as illustrated in (a) Fig. 6. Once
the initial alignment is performed, non-linear model trans-
formations defined as the minimisation of the error function
in Eq. (12) are entailed through learning using KPCA.

To summarise, our process for learning a dynamic
appearance model of both shape and texture across views
is illustrated in (b) of Fig. 6. This is achieved by (a) a
generic-view shape template for bootstrapping alignment
at different views, (b) KPCA based learning of non-linear
model transformation across views and (¢) KPCA con-
strained model fitting using simple linear regression. This
dynamic appearance model extends the active appearance
model introduced by Cootes et al. [6] to non-linear varia-
tions across views.

It is worth pointing out, however, that the reconstruction
of a vector from the KPCA space to the original space
requires to solve an optimisation problem that is computa-
tionally expensive [26]. This problem can be solved by an
iterative algorithm whose solution is heavily dependent on
the vector used to start the computation. In other words, the
reconstruction of KPCA in the input space can only be
obtained if a good approximation of that reconstruction is
given. This assumption is appropriate when KPCA is
applied to pose augmented non-linear transformation of
shape models as described in Section 4. However, for fitting
a dynamic appearance model of both shape and texture
across views, an approximation of reconstruction in the
image space is not available, except for the first iteration.
Such an approximation is necessary if the KPCA based
reconstruction is to converge. To overcome this problem,
we adopt a simple scheme by which the reconstruction
process iterates based on both the current parameters and
the reconstruction of the previous iteration.



S. Gong et al. / Image and Vision Computing 20 (2002) 307-318 313

Image

[ Intensity normalisation |

[Generic-view alignment |

(a)

Regression in
» model fitting

(b)

Fig. 6. (a) Variance of the error (confidence measure) from inner landmark alignment across pose. The z-axis of this 3D graph is proportional to the distance
covered by an inner landmark on the aligned shape as the pose varies from profile to profile. Ideally this distance for all landmarks should be null, as it is for the
nose-tip. (b) Computations for constructing a dynamic appearance model across views. The projection to and back-projection from the model are outlined in

plain line. The model fitting process to novel images is outlined in dashed line.
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Fig. 7. The first (top) and second (bottom) modes of shape variation for a linear PDM covering 50° views (left) and across 180° views (right). The valid shape
range (VSR) for training the +20° PDM was set to =3/A; and for across =90° views, it was limited to +0.2./A;.

Fig. 8. Fitting shapes to images using linear ASMs trained across £20° (left) and =90° (right).

6. Experiments

To illustrate our approach for corresponding dynamic
appearances across views, we use a face database composed
of images of six individuals taken at pose angles ranging
from —90 to +90° at 10° increments. The pose of a face is
labelled by means of an electro-magnetic sensor attached to
the subject’s head and a camera calibrated relative to the
transmitter [19,32]. The electro-magnetic sensor has an
average angular error of 4—6° in both tilt and yaw. The
landmarks on the training faces were manually located for
training.

On linear ASMs coping with pose change. A linear PDM
trained to capture face shape variation between narrow

views (£20°) was compared to a PDM trained for a full
range of poses between =90°. Fig. 7 shows the two main
modes of variation for each of these linear PDMs.

The two PDMs in Fig. 7 and their corresponding LGL
models were used to fit ASMs to face images, as shown in
Fig. 8. Using the model trained for the 50° pose range, an
ASM was able to fit shapes to face images quite well (left).
However, when the PDM across the view-sphere was used,
an ASM was only able to fit shape satisfactorily near the
frontal view. At most of the other poses, the ASM was
unable to recover the shape within the VSR.

On view-context based non-linear ASM. In comparison,
KPCA was used to train a non-linear PDM and capture face
shape variation across views (£90°). Fig. 9 shows the three
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Fig. 9. First three modes of shape variation for a KPCA based non-linear PDM. The VSR was set to —1.5/A; < b; = 1.5\/A;.
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Fig. 10. Fitting shapes to images at different views using a non-linear ASM.

main modes of variation and that the non-linear PDM
succeeds in extending shape VSR where the linear PDMs
had failed, as shown in Fig. 7.

The non-linear PDM and its corresponding LGL models
were used to fit a non-linear ASM on face images, as shown
in Fig. 10. The non-linear ASM converges and recovers
shapes within the VSR but not to the right shape. This is

e =~

because sometimes the background grey-levels are very
similar to the grey-levels around certain landmarks at speci-
fic poses. In such cases, using local grey-levels alone will
fail to find correspondence between views. To better dis-
criminate object foreground and background, we introduce
explicit pose index as view-context based constraint.

A view-context based non-linear PDM and its corre-
sponding LGL models were used to fit novel face images,
as shown in Fig. 11. The ASM converges to the right shape
and is able to recover the pose. We used the frontal view
shape to start fitting. For the first iteration, the landmarks
were allowed to move along the normals to the shape
contour for up to a distance of 12 pixels on each side.

[

Fig. 11. Fitting shapes to images at different views using a view-context based non-linear ASM.

[S1505

Fig. 12. An example of fitting a shape to a face image and recovering its pose at —80°. The estimated shapes overlaid upon the images are shown after iterations

0,1,4,6,12, 13, 15, 16, 20 and 25.
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Fig. 13. Comparing shape fitting errors across views. Typical fitting errors (vertical axis) of different ASMs in pixels are drawn against pose in yaw at 20°
interval (horizontal axis). Whilst the dashed-line represents a linear ASM, the plain-line is for a non-linear ASM and the bold-line for a view-context based

non-linear ASM.
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Fig. 14. Examples of fitting shapes to images at novel views using a view-context based non-linear ASM.

Fig. 15. An example of fitting shapes to images of an unknown face across views using a view-context based non-linear ASM.
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Fig. 16. Top: A view-context based non-linear ASM trained on all poses in yaw (plain-line) gave similar fitting errors compared to a model trained only on half
of the poses in yaw (dashed-line). Bottom: Similar fitting errors also exist for a model trained on all faces (plain-line) and a model trained only on some of the
faces and tested on a novel face (dashed-line). The horizontal axis shows the yaw variation at 20° interval and the vertical axis shows fitting errors in pixels.
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Fig. 17. Each row is an example of both texture and shape fitting. The left
image of each row is the original image, the following are the images
obtained at successive iterations. The penultimate image shows the
converged fitting of both the shape and texture and the last image overlaps
the recovered shape on the original image. The first example had pose offset
of 20° and translational offset of five pixels in x-direction. The second, third
and fourth had pose offsets of 40, 50 and 40°, respectively. The width of a
face is on average 30 pixels.

This was then adjusted proportionally to the fitting error
after each iteration. A LGL model was built using three
pixels on both sides of a landmark along the normal to the
shape. Both the PDM and the LGLs were restrained to ten-
dimensional eigenspaces. Fig. 12 shows an example of
fitting a shape to a face image. From left to right, the images
depict the shape transformation in the process. Fig. 13
compares fitting errors from different ASMs. A linear
ASM performs better at the mean pose than at extreme
poses. A non-linear ASM exhibits similar results except at
the mean pose. For all poses, a view-context based non-
linear ASM performs significantly better.

Generalisation to novel views and novel faces. Two more
experiments were conducted to evaluate the capability of
the view-context based non-linear ASM for interpolating
shape of novel faces not in the training set and recovering
poses at novel views. A view-context based non-linear ASM
was first trained at 20° pose intervals between +90°. The
model was then used to recover both the shape and pose of
faces at novel views. Here the number of eigenvectors was
increased to 20 and the VSR was extended to 10 times the
standard deviation. Examples of shape fitting at novel views
between known poses are shown in Fig. 14.

A view-context based non-linear model was also trained
to recover both the shape and pose of novel faces not in the

Fig. 18. First two modes of variations of the combined pose-invariant shape
and texture appearance model (£3 std).

Fig. 19. Each pair of images is an example of texture fitting. The first image
is the original image and the second is the texture fitted by the model with
known shapes.

training set. A model was trained on all but one of the faces
in a database and was then tested on all poses of an unknown
face. The experiment was performed for a number of
unknown faces and an example is shown in Fig. 15. A
comparison of fitting errors from model generalisation is
shown in Fig. 16.

On dynamic face appearance models across views. A
dynamic face appearance model was first trained using
face images of one individual at 19 poses (from —90° to
+90° at 10° increments, one image per pose). Four, ten
and six eigenvectors were retained to model the shape,
the texture and the combined appearance, respectively.
Examples of fitting are shown in Fig. 17.

A more generic dynamic face appearance model was then
trained using images of faces of five individuals at 19 poses.
Ten, 40 and 20 eigenvectors were retained to model the
shape, the texture and the combined appearance, respec-
tively. The first two modes of variation are shown in Fig.
18. Fig. 19 shows examples of fitting texture with known

fitted

shape

iterations
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Fig. 20. Each row is an example of both shape and texture fitting. The first
image is the original image, the following are the images obtained at
successive iterations. The penultimate image shows the converged fitting
of both the shape and texture. The last image overlaps the recovered shape
onto the original image. The first example started with pose offset of 40°.
The second example started with pose offset of 50° and translational offset
of —4 pixel in x-direction and —3 pixels in y-direction. The third and fourth
examples started with pose offset of 90 and 40°, respectively, and they both
had a translational offset of —6 pixels in x-direction.
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shapes at different views of large pose variation. Examples
in Fig. 20 show model fitting and reconstructions when both
shape and texture are unknown. While the shape (both the
pose and the feature points) can be recovered adequately,
this is no longer the case for texture. Whilst the pose of the
texture can be recovered correctly, the intensity information
of all the pixels are not always recovered accurately. The
reason for such effect is that the alignment of all pixel is
only approximated and the variation in the aligned texture
due to the pose change overwhelms the variation due to
identity difference. It is worth pointing out though that for
recognition purposes, accurate texture reconstruction at
every pixel may not be required [18,39].

7. Conclusions

In this work, we have focused on the problem of model-
ling the 2D dynamic appearance of faces across significantly
different views. Appearance of a face varies considerably
across views, more so than those of different faces at the
same pose. Such variations are intrinsically non-linear. This
non-linearity makes establishing accurate correspondence
difficult. A central computational issue of concern is how
knowledge of both shape and texture of faces at a single or a
set of familiar view(s) can be generalised to novel views. In
particular, we considered how structural knowledge about
shape could be learned and used to provide the necessary
correspondence for obtaining approximately shape-free
texture across views.

We addressed the problem by learning non-linear shape
transformation across views using Kernel PCA based on
SVM. We also augmented the non-linear 2D active shape
model with pose constraint. We further presented a method
for constructing a dynamic face appearance model able to
capture both the shape and the texture of faces from profile
to profile views. The non-linearities of such variations were
again learned using Kernel PCA. In order to bootstrap the
alignment and warp texture, a generic-view 2D shape
template was introduced.

So far, different views of faces have been treated as a
collection without any order. The problem of learning trans-
formation functions of face appearances between views
may be made unnecessarily hard as a result. Realistically,
however, faces are observed continuously in space and over
time. Consequently, dynamic 2D facial appearances across
views ought to be spatio-temporally continuous and pro-
gressive. Our current and future work focuses on addressing
the following question: to what extent the temporal con-
tinuity and the ordering of different views can be exploited
in extracting knowledge about facial appearances over time.
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