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Abstract

This paper shows that any sequence 1, of tautologies which ex-
presses the validity of a fixed combinatorial principle either is “easy”
i.e. has polynomial size tree-resolution proofs or is “difficult” i.e re-
quires exponential size tree-resolution proofs. It is shown that the
class of tautologies which are hard (for tree-resolution) is identical
to the class of tautologies which are based on combinatorial princi-
ples which are violated for infinite sets. Further it is shown that the
gap-phenomena is valid for tautologies based on infinite mathematical
theories (i.e. not just based on a single proposition).

A corollary to this classification is that it is undecidable whether
a sequence 1, has polynomial size tree-resolution proofs or requires
exponential size tree-resolution proofs. It also follows that the degree
of the polynomial in the polynomial size (in case it exists) is non-
recursive, but semi-decidable.

Keywords: Logical aspects of Complexity, Propositional proof complexity,
Resolution proofs.

1 General motivation

In this paper a new kind of result for propositional logic is introduced. It
is shown for a large class of uniform families of unsatisfiability problems
C1,Co,...,Cj,... that the family either has polynomial size tree-resolution
refutations or requires full exponential size tree-resolution refutations. Thus
intermediate growth rates like for example 21°gk(”),k = 2,3,... never oc-
cur. For non-uniform families (where, for example, each C; might express a
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different combinatorial principle) there is no complexity gap and any super-
polynomial but sub-exponential growth-rate can appear. Somewhat infor-
mally the main result states that if the sequence C; expresses the same
combinatorial principle for each j, then there is a complexity gap for tree-
resolution.

In complexity theory we are particularly interested in what happens to a
set of decision problems that are similar except for size. The main concern
is with what happens to the computational complexity as the size of the
problem tends to infinity. In propositional complexity we frequently study
what happens to a collection of tautologies which are similar except for size.
Here the main concern is what happens to the proof complexity (for a given
proof system) as the size of the tautologies tends to infinity.

One interesting general feature in Complexity Theory is that while a few
complexities seem to appear again and again, other complexities virtually
never appear. A somewhat similar point is made by Hardy in [19] where he
observes:

No function has yet presented itself in analysis the laws of whose
increase, in so far as they can be stated at all, cannot be stated,
so to say, in logarithmic-exponential terms.

If Hardy’s remark is valid for complexity theory and proof complexity
in general we will expect - due to the discrete nature of the logarithmic-
exponential growth rates - that complexity gaps are widespread and part of
a general phenomenon.

An important motivation for studying propositional proof systems is
tied up with the following basic question: Given a true statement (tau-
tology) what is the length of the shortest proof of the statement? Here
the answer depends, of course, on which axiomatic proof system is being
used. From a computer science perspective the question is particularly fun-
damental for propositional logic. A vast number of problems that occur
in computer science including knowledge-representation, learning, planning,
automated theorem proving, verification etc. are linked to this problem.
As formalised by Cook and Reckhow [14], there exists a propositional proof
system in which any tautology v has a proof of size bounded by p(|y|) for
a fixed polynomial p if and only if NP=co-NP. This question is far beyond
current techniques. However, Cook and Reckhow proposed a program of
research which systematically tries to obtain non-polynomial lower bounds
for stronger and stronger propositional proof systems. The hope is that this
will eventually lead to a separation of NP from co-NP.



Tautologies expressing versions of the pigeonhole principle (and other
related combinatorial principles) have played an important role in obtaining
lower bounds for the length of propositional proof. The same principles have
been widely used to separate propositional proof systems.

The first super-polynomial lower bound for resolution (satisfying a re-
striction called regularity) was obtained by Tseitin [38]. Subsequent work
simplified Tseitin’s proof and improved the lower bounds for regular res-
olution [16], [39]. However great difficulty was experienced in extending
Tseitin’s arguments to unrestricted resolution (=dag-resolution). The hur-
dle was first overcome when Haken managed to give a super-polynomial
lower bound for the pigeonhole principle for dag-resolution [18]. This re-
sult was later improved considerably by Ajtai [1], [2] to a super-polynomial
lower bound on bounded depth Frege proofs. Ajtai also used his approach
to show independence results from Bounded Arithmetic. These results were
subsequently improved in various ways and generalities [3], [4], [7], [31], [32].

In this paper we consider a quite general class of tautologies. The tau-
tologies like the pigeonhole principle (or the related Counting modulo ¢
principles) studied in [1], [2], [3], [4], [7], [18], [31], [32] can be viewed as a
special case of a translation where a given universal second order sentence is
translated into a sequence of tautologies in propositional logic. A sequence
of tautologies for the pigeonhole principle appears for example by translating

Vive 3z f(z) =c vV Jz,yz £y & f(z) = f(y))

into propositional logic. More specifically for each n we can translate the fact
that the first order sentence Vx f(z) #c¢ A (Vz,y x =y V f(x) # f(y)) has
no models for size n into an unsatisfiable system of clauses. This translation
technique is very general and allows us make formal sense of what it means
for a class of tautologies to be similar except for size [34].

In section 3 we review this translation procedure in more details. In
that section we also state the main theorem and discuss some corollaries.
The proof of the main theorem consists of two parts - the lower bound and
the upper bound. The lower bound is exponential, while the upper bound
is polynomial. This is no contradiction since the bounds apply to different
situations.

In the section further perspectives it is shown that it is possible to assign
a mathematical theory Tp(C) to any given propositional proof system P

and any proof size complexity C = C(n) (like e.g. polynomial size n°W),

size n1o8° (M) op size 20(M) ). This idea is new and places the main result

in a larger perspective. For any propositional proof system P one can ask



about the behaviour of Tp(C) when the proof size resources C increase. This
question is well defined, and is linked to the complexity gap phenomena I
introduce in this paper. The paper raises a number of questions related to
the theory Tp. I conjecture that many other propositioanal proof systems
also have a complexity gap.

2 Tree resolution

In this section I give a brief reminder of some of the basic concepts related
to resolution proofs.

A literal is a propositional variable or the negation of a propositional
variable. A clause C := {lj,ls,...,l,} is a collection of literals, and it is
satisfied exactly when the disjunction Iy VIy V...V I, holds. In the famous
NP-complete problem 3-SAT, the decision problem is to decide if a given
collection of clauses (which each contain at most 3 literals) is satisfiable.

Resolution is a refutation system designed to provide certificates (i.e.
proofs) that a system of clauses is unsatisfiable. A given formula is shown
to be a tautology by showing that its negation, put into conjunctive normal
form (i.e. clausal form) is unsatisfiable. This is done by means of the
resolution rule

Ci1U{p} Cyu{-p}
CiLUCy

Resolution rule :

The given clauses are often referred to as azioms, and the task is to derive
the empty clause (the contradiction) from the axioms. In tree-resolution the
proof is organised as a binary tree with the axioms in the leaves and the
empty clause in the root. In dag-resolution (or just resolution) the proof is
given as a linear sequence C1, Cs, ..., C, of clauses, where each clause either
is an axiom or can be obtained by means of the resolution rule (applied to
two already derived clauses). In a resolution proof, clauses can be reused
more the once. A tree-resolution proof do not allow this. In this paper we
will only consider tree-resolution proofs.

3 Translating logic into propositional logic

Informally the first part of the result can be stated as follows: Let v, be
a sequence of tautologies which for each n expresses the validity of a fixed
combinatorial principle Peom- The main result states that for any such



sequence 1, either the sequence has polynomial size tree-resolution proofs
or the sequence requires truly exponentially size tree-resolution proofs.

We have of course to make precise what it is for a sequence 1, of tautolo-
gies to express a combinatorial principle. The approach I take is to consider
combinatorial principles to be statements which holds for all structures (in-
cluding graphs and hyper-graphs) on n vertex. Since universal second order
properties on graphs (hyper-graphs) defines co-NP, universal second order
properties is clearly the largest class of graph-properties which we meaning-
fully will expect has straight forward translations into propositional logic
(since the set of tautologies is co-NP complete).

This however is the same class a the set of first order formulas which is
valid in all models of size n. Thus we assume the P,y is of the form: "
has no models of size n” for some first order sentence 1.

I would like to describe the procedure for translating such combinatorial
principles into sequences of sets of clauses in propositional logic.

Instead of describing the translation method in full detail, a single ex-
ample will be used - the theory DLO of dense order without endpoints (this
example is due to Urquhart [41]). Readers who want to see the description
of the translation procedure in full generality are refered to [34]. The theory
DLO has a single binary relation < as it only a primitive non-logical symbol.
Its non-logical axioms are as follows:

1) <y ANy<z)—-z<z
(2) z<y—>32(z<z A z2<y)
3) z<yVz=yVy=<z

(4) —(z =<7

(6) Jy (z=y)

6) Iy (y=<=)

The first step is to “skolemize”, i.e. to convert the above theory to an equiv-
alent purely universal theory by introducing Skolem functions to replace ex-
istential quantifiers (see for example Chapter 3 in Hodges’s textbook [20]).
In the case of DLO, we add three new function symbols, f,g,h to the un-
derlying language. Further, the second, fifth and sixth axioms are written
as universal axioms:

(2a) z=<y—>(z=<f(zy) A flz,y) <y)
(5a) z < g(x)
(6a) h(r) <=z.



The next step is to rewrite the theory so that there are no embedded func-
tion symbols, so that all atomic formulas in the axioms are of the form
R(%), f(§) = z or x = y, where Z and ¢ are sequences of variables. An
atomic formula of this form will be decribed as basic. Constants are treated
as zero-place function symbols, so that, for example, the formula 0 < 1 is
not a basic formula, although z < 1 and 0 < x are basic. A formula of the
form z = f(%) is not viewed as a basic formula.

In our example DLO, the only axioms involving embedded function sym-
bols are the new axioms 2a, 5a and 6a. We replace these by:

2b) (x<y A flzyy)=2)—> (<2 A z2=<Y)
(5b) g(z)=y—z =<y
(6b) h(z)=y—oy=<z

Finally, we rewrite the axioms of the new purely universal theory as con-
junctions of clauses. In the case of the theory derived from DLO, there is
almost nothing to do, since all of the axioms are Horn formulas except for
the (new) axiom 2b.

Let T be the theory that results from the preceding sequence of transfor-
mations. It is important to note that the original theory and the transformed
theory T have essentially the same set of models; to be more precise, every
model of the original theory can be expanded to a model of the transformed
theory, and every model of the transformed theory can be cut down to a
model of the original theory.

We now describe the definition of the sequence of contradictory sets of
clauses derived from the theory T. We form the set St of clauses that
express the that there is a model of T of size n. Let Var, := {c1,¢c2,...,cn}
be new constants not appearing in the theory. We form the set of clauses
C, that results from replacing all variables in an axiom of T' by constants
from Var,, in all possible ways.

Let us regard the atomic sentences in St,, as propositional letters (that
is to say, we disregard their internal structure). Each atomic sentence ¢; = c¢;
is replaced by true/false depending on whether i = j or ¢ # j. This ensures
that the constants ci,co,...,c, are distinct and that there are at least n
things in the universe. In order to distinguish between an atomic sentence
1 and the propositional letter corresponding to it, we shall enclose 1 in
corner quotes, so that [1] is the propositional letter corresponding to 1. We
shall say that an atomic sentence is basic if it results from a basic formula
by substituting constants from Var, for all the variables. The theory DLO
leads to the system Spr,o,, of propositional logic which includes the clausal



form of the propositions:

(l)l Tij NTjk —> Tik, i,j €{1,2,...,n}
(2b)"  (rij A fijr) = (ri Areg), 4,5,k €{1,2,...,n}
(8)"  rij Vrji, i# 74,4, €{1,2,...,n}
@) -, ie{1,2,...,n)
(5b)  gi; = rijy 4,5 €{1,2,...,n}
(6b)  hij =1y, i,5€{1,2,...,n}

where 7;; be shorthand for [¢; < ¢;], fijx shorthand for [f(c;,c;) = ek, 9ij
shorthand for [g(c;) = ¢;] and h;; shorthand for [h(c;) = ¢;].

Besides these clauses S, also consist of a set of clauses I'<;, expressing
that there are at most n things in the universe. More specifically I'<;,
consists of all clauses obtained by substituting a term of the form f(a)
in the formula (r = ¢; Vo = ¢ V...V = ¢,), where @ is a sequence
of constants from Var,. Finally for each function symbol f we include the
clauses {—[f(@) = ¢;],~[f(@) = ¢ ]} where j,m € {1,2,...,n} are distinct
elements. In our example we get:

(i) fij1V fij2 V-V fijns i,j€{1,2,...,n}
() gaVgaV...Vgm, i€{,2,...,n}
(iil) hitVhiaV ...V hi, i€{1,2,...,n}
(iv)  ~fijk V= fiji, i,5,k #1e€{1,2,...,n}
(V) —gij Vg,  Gi#k€{1,2,...,n}

(vi) —hij V —hig, i,j #ke{l,2,...,n}

This completes the translation of the theory DLO. The propositional trans-
lation of DLO consists of St which precisely consists of clausal versions of
(1), (2b), (3)', (4), (5b)', (6b)" as well as (i)-(vi). As the theory DLO has no
finite models (in particular no models of size n) Spro,, is unsatisfiable. In
general:

Lemma 3.1 ([41]) If T is a first order theory, and St, a set of clauses
derived from T by the above construction, then St is satisfiable (in the
sense of propositional logic) if and only if T has a model of size n.

Furthermore if T consists of the conjunction of finitely many first order
sentences, then there exists a constant ¢ > 0 such that St contains less
than n¢ symbols for each n > 2.



Proof: If St is satisfied by an interpretation I, then we can construct
a model M on the universe {1,2,...,n} by interpreting the constant c; as
standing for the integer 4, and interpreting the relation and function symbols
in accordance with which atomic formulas are true in I. That is to say, if f
is a function symbol in the language of T', and € a sequence of constants in
Var,,, then we make f(¢) = ¢; true in the model M if and only if [ f(¢) = ¢;]
is true in the interpretation I. If R is a relation symbol in the language of
T, then we make R(C) true in M if and only if [R(C)] is true in I. Since we
have included the axiom (f(Z) =y A f(Z) = z) — y = z in our theory, it
follows that exactly one propositional letter of the form [f(¢) = ¢;] is true
in I, since St includes C,,. Hence, the functions in M are well defined.

We need to verify that all axioms of T" are true in M. Since the axioms
involves only basic atomic formulas, it is sufficient to show that if (%) is a
basic atomic formula, and @ a sequence of integers in {1,2,...,n}, then ¢ (a)
is true in M if and only if [¢(c(@))] is true in I, where ¢(@) is a sequence
of constants from Var,, in which the successive subscripts form the vector
a. For basic formulas of the form holds true by definition of M. The only
remaining type of basic formula is £ = y; the claim holds in this case by the
axiom z = z and the fact that St includes all of the sentences —(c; = ¢;)
for ¢ # j.

If the theory from which we begin is (as in the case of our example DLO)
a finitely axiomatisable theory, then the procedure for producing the set of
clauses St,, can be expressed as a polynomial time algorithm. The size of
St,n is bound by a polynomial in 7. m|
As stated in lemma 3.1, if 7" has no finite models (as is the case for our
example DLO), all of the sets of clauses in the sequence Srj,,n =1,2,...,
are contradictory, and hence have tree resolution refutations. Our main
theorem concerns such refutations.

Before we proceed it is important to notice that the above formal trans-
lation of any given theory T (into clauses Stj,) is highly natural and is in
agreement (modulo minor syntactic changes) with the informal but canonical
result one would get without knowing the above procedure. The translation
procedure results in a system of clauses (like (1)’,(2b)',(3),(4), (5b)’, (6b)’
in our example) which is a syntactial reformulation of the skolemised theory
T. Besides this for each function symbol the translation includes clauses
(like (i)-(vi)) which ensure that functions and constants are well behaved
(i.e. have one and only one value).

The translation corresponds (except from a minor difference in the treat-
ment of constants in the original language for T') to the informal procedure
which seems to have been used when considering a principle like the pigeon-



hole principle [14] or the parity principle [3]. The translation also agrees
with the procedure defined in [34]. Thus it is no coincidence that the propo-
sitional version of the pigeonhole principle first studied by Haken [18], is
essentially the same version one gets by translating the pigeonhole principle
(as stated in predicate logic) as described above. The same holds for many
other combinatorial principles already studied in the literature.

Notice however that the translation is not is unique. There is usu-
ally more than one way to write a propositional formula as a conjuction
of clauses. And more significantly there is usually more than one way of
skolemising a theory T'. In section 6 we will make a slight extension in the
set of translation procedures such that any reasonable translation procedure
is covered. In section 6 we show that our main result is robust and remain
valid for all the translation procedures we consider.

The alert reader will have noticed that the system of clauses St , is closed
under the natural action of the symmetrical group S,,. This is not surpris-
ing as the propositional version of the sentence “I" has a model of size n” is
independent of the underlying interpretation of the constants ¢y, co, ..., cp.
It turns out that the class of tautologies we can get from translating propo-
sitions in logic in propositional logic is exactly the class of S,-generated
tautologies we defined in [34]. The S,-symmetry plays a crucial role espe-
cially when considering algebraic proof complexity and link these problems
to representation theory - a central and well studied area in mathematics
(see [35] for more details).

For a theory T we let k%' denote the maximal arity of a relation symbol
in the language of T, and let k" denote the maximal arity of a function
symbol in the language of T. We can now state our result as follows:

Theorem 3.2 Let T be a first order theory (which might not be finitely
aziomatisable and which might be highly non-recursive). Let St denote
the satisfiability problem which results from applying the natural translation
procedure which translates the statement “I' has a model of size n” into
propositional logic. There are two possibilities:

(1)  For each value of n for which St is unsatisfiable, the smallest tree-

. . . 1 fi
resolution refutations have size at least 2"/ ™ax(kr,1+kz")

(2)  Asymptotically (i.e when n tends to infinity) St has polynomial size
(in n) tree-resolution refutations.

Possibility (1) happens if and only if T has an infinite model. The lower
bound in (1) holds whenever St is satisfiable for some n' > n.



The theorem gives a complete classification of the theories 7" for which Sz,
requires large tree-resolution refutations (if there are any at all - in general
St could be satisfiable). More specifically, a theory T' leads to hard (for
tree-resolution) tautologies if and only if 7" has an infinite model.

Notice that the result is expressed in terms of n - the size of the model
- and not the size of the satisfiability problem (which is either infinite with
infinitely many variables - when T is infinite - or has size n° for some constant
c>0).

Corollary 3.3 There is no decision procedure which given a first order for-
mula v as input, decides whether the sequence Sy 5, has polynomial size tree-
refutations or requires exponential size tree-refutations. More specifically the
collection of v which have polynomial size tree-refutations is non-recursive
(but recursively enumerable).

Proof: The collection A of first order sentences which has an infinite model
is - according to Trachtenbrots theorem - non-recursive. The collection A
has a complement which is recursively enumerable. O

Theorem 3.2 is optimal in the following sense:

Proposition 3.4 There exists 1 for which the sequence Sy, has optimal
tree-resolution refutations of size 294

Proof: This proposition is non-trivial since n denotes the size of the model
rather than the number of variables. Consider Spro,. The lower bound
of 22" follows from Theorem 3.2. The upper bound of 20 follows by
induction on n. This argument is especially straightforward if we view tree-
resolution refutations as decision trees (see next section for more details).
O

The polynomial size upper bound in Theorem 3.2 cannot be improved by
choosing the polynomial degree so it depends only on simple syntactic prop-
erties of .

Theorem 3.5 There is no total recursive function r = r(‘¢)') which given a
first order sentence ¥ as input, produce output r € N, such that the sequence
Syn s guaranteed to have either < n”-size tree-refutations (for n sufficiently
large) or to require exponential size tree-refutations.

This theorem shows that the exponent in the polynomial bound can be
arbitrarily bad. More specifically:

10



Corollary 3.6 For any total recursive function F however fast-growing,
e.g. the Ackerman function, Fe,, Fr, (see for exzample [37] for a survey of
fast growing functions), there exists a sentence 1 such that the sequence Sy,
has polynomial size refutations. But the degree of the polynomial needed to
bound the size of the smallest tree-refutations, is larger than F(|1)|) where
|| denotes the number of symbols in .

Let me emphasise that the method of generating uniform families of tau-
tologies we discussed above is quite powerful. Actually (assuming NEXP #
co-NEXP) the method of getting tautologies from translating statements in
predicate logic is rich enough to generate a universally difficult sequence
Spn1sSnss - - - of unsatisfiable collections of clauses which require non-
polynomial size refutations for any given propositional proof system [34].
Notice that main result (Theorem 3.2) includes tautologies of this general
form (where Sy, only is unsatisfiable for n € A for some infinite subset
ACN).

The philosophy behind Theorem 3.2 was first articulated in [29] where
it was shown (in the context of Bounded Arithmetic) that combinatorial
principles which fail as infinitary combinatorics in a sense (which can be
made precise) are harder (to prove) than combinatorial principles which are
also valid as part of infinitary combinatorics. More specifically, in [29] I
showed that combinatorial principles which fail for infinite sets can never be
proven on the first tree levels S (a) C T} (o) C S%(a) of Sam Buss hierarchy
of Bounded Arithmetic, while such combinatorial principles in certain cases
can be proven on the fourth level 72(a). It is well known that provability
in fragments of Bounded Arithmetic is closely related to propositional proof
complexity (for more details see [21]). The results in the present paper are,
however, technically unrelated to the results in [29]. The proof technique in
the current paper is different from the forcing technique which was employed
in [29]. Jan Krajicek has pointed out (personal communication) that the
exponential lower bound in Theorem 3.2 follows by a modification of his
proof of Theorem 11.3.2 in [21] (which is essentially the main result in [29]).
See also Lemma 9.5.2 in [21] where this is stated explicitly.

I am aware of only one other result which gives a complexity gap between
polynomial complexity and exponential complexity. A beautiful result [17]
relates the Vapnik-Chervonenkis (VC) dimension to the growth rate of the
complexity of learning the concept class C'. It states that this growth rate is
either polynomial or exponential. Furthermore, it is polynomial if and only if
the VC-dimension of C is finite. The underlying mathematics in this result
is completely different from the one behind the complexity gap theorem

11



(Theorem 3.2). It is however remarkable that the dichotomy of finite versus
infinite plays a crucial role in both the VC-complexity gap theorem as well
as in the complexity gap theorem.

4 The exponential size lower bound

For the lower bound it is convenient to view a tree-resolution refutation as
a decision tree. This is essentially done by turning the refutation tree on
its head. On an input (i.e. a truth assignment) the decision tree outputs
an unsatisfied clause. To illustrate the idea, consider for example, the tree-
refutation:

{T, 5} { ? }
{s}
0

The refutation shows that {{s}, {p,r},{p, s}, {7, s}} is unsatisfiable. If
we turn the refutation on its head we get the binary decision tree.
s?

{s}

r A\ s

pA-rA—-s pA-rA-s

Decision tree refuting {{—s},{-r,s},{-p,s}, {p, r}}

For any truth assignment of the variables (s,p and r) the decision tree

12



uniquely determines a clause which is unsatisfiable. Notice that each branch
leads to a conjunction which violates a clause.

In order to simplify the situation further I introduce an idea inspired
by [28]. The idea is to define and analyse a game between a prover and
an adversary. The prover (female) holds a decision tree while the task of
the adversary (male) is to make up answers to the questions put forward
by the prover. The adversary claims (mistakenly) that a set S of clauses is
satisfiable. The prover wins if the adversary is caught in an elementary lie
(contradiction). An elementary lie appears if the adversary has produced
answers which violate a clause in S. A strategy for the prover is a decision
tree. The answers of the adversary determine a path through the decision
tree. Each leaf in the decision trees corresponds to an elementary contradic-
tion. The task of the adversary is to survive as many questions as possible.
We observe that the adversary can survive no more than h — 1 questions
where h is the length of the longest branch through the decision tree.

We want to produce a lower bound on the size of any decision tree (rather
than on the longest branch) so we modify the rules of the game slightly. To
do this we change the task of the adversary. The (modified) task of the
adversary is to embarrass the prover as much as possible with out being
caught in a lie. An embarrassment appears whenever the adversary gives
the prover a free choice . In that case the prover is allowed to answer the
question the way she prefers.

To be slightly more formal for any given system S of clauses and for
any k € N we define the game G(S, k) as follows: The prover asks questions
(concerning the truth value of propositional variables). Given a question the
adversary has two options: He can either answer the question or give the
prover a free choice. In the latter case the prover has to choose an answer to
the question (this answer should of course be known to the adversary). The
adversary scores one point every time a free choice is given to the prover.
The adversary wins if no elementary contradiction is reached before he has
scored k points. To avoid the game dragging on indefinitely (by for example
the prover keeps asking the same question), we design the rules such that
the adversary wins if the prover ask the same question twice.

Lemma 4.1 If the adversary has a winning strategy in the game G(S,k)
each tree resolution refutation of S contains the binary subtree which has
height k and size 28t1 — 1. Consequently each tree resolution refutation of
S must have size > 2K+t — 1,

Proof: Assume the adversary has a winning strategy in the game G(S, k).
Let 7 be an arbitrary decision tree for S. We can assume the same question
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is only asked once along each branch in 7. It suffices to show that 7 must
contain a binary subtree of hight k and size 2¥*! — 1. The strategy of
the adversary determines a subtree 7’ which consists of all possible plays
which can appear when the adversery sticks to his strategy. Each node
in 7" has either one or two children. A node has one child whenever the
question corresponding to the node is answered. A node has two children
whenever the question corresponding to the node was left as a free choice.
The adversary has a winning strategy in G(S, k) so each branch in 7' has
at least k branching points. Thus 7' (which is a subtree of 7') contains the
binary subtree which has height k and size 2¥*1 — 1. |

Next assume that we are given a first order theory T as well as n € N.
Consider St,.

Lemma 4.2 Assume there is a model M of T which contains more than n

elements. Then the adversary has a winning strategy in the game
G(Sryms (n — k™) /max (K5, 1+ kE%)).

Proof: Assume that there is a model M of T' which contains more than n
elements (possibly infinitely many). Using the existence of such a model we
devise a winning strategy for the adversary. Essentially the adversary claims
that there is model M which has n elements. Consider any strategy for the
prover and let 7 denote the decision tree corresponding to this strategy. The
prover asks questions about this hypothetical model M. Let U denote the
class of models of M which contains at least n points and which has the
constants c¢1,co,...,c, interpreted as distinct elements. We assumed that
there is a model M of T' which contains more than n elements so U is non-
empty. The adversery’s strategy involves many models in U rather than a
single fixed model.

Consider a node v in the decision tree 7. The decisions made until that
node is a conjunction of basic atomic sentences and negation of basic atomic
sentences. Let ¥, denote this conjunction. Informally ¥, represent provers
knowledge of the model M adversary claims exists.

Let [R(s1,82,---,87)], 81,82,...,8r € {c1,C2,...,¢n} denote the ques-
tion assigned to the node v. If all models M € U which satisfies ¥, satisfies
R(s1,52,...,5,) the adversary answers “yes”. If all models M € U which
satisfies U satisfies —R(s1, S2,- .., S,) the adversary answers “no”. If there
exists (at least) two models M, My € U which satisfies U, such that M;
satisfies R(s1, s2,...,8,) while My satisfies —=R(s1, $2,.-..,5,) the adversary
gives the prover a free choice. We then refer to the node as a ‘free choice’
node. To show the lemma it is sufficient to show:
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Claim A: This strategy guarantee the adversary a win (i.e. the adversery
can always produce at least (n — k™) /max (k5! 1 + kf¥)) free choices in an
actual game)

proof of claim A: Assume that the prover can win against this strategy
i.e. has a decision tree 7 which guarantees her a win. As before let 7'
denote the subtree of all possible plays (when adversary follows the strategy
defined above). Fix an arbitrary branch b in 7' (i.e. a possible play which
can appear when the adversary follows the strategy defined above). Consider
the collection of constants ci,cs,...,c, which appears in the basic atomic
sentences which appears in ‘free choice’ points along b. Notice that each
‘free choice’ point corresponds to a branching point in 7. If there are k
‘free choice’ point along the branch there is at most k x max(k%¢!, 1+ u) such
constants (where u := kf¥). Tt suffices to show that each of the constants
€1,€2,...,Cq (with at most u exceptions) must appear in at least once in
a basic atomic formula associated to a ‘free choice’ point along b. Before
completing the proof of the claim we show:

Claim B: At least n — u of the constants c1,¢2,--.,¢n, appear in a basic
atomic formula associated to a ‘free choice’ node b.

Proof of claim B: Assume that none of the constants c;,, ¢i,,...,¢Ci,,Ci,yy
appear in a basic atomic formula associated to a ‘free choice’ node along
some branch b in 7. To show the subclaim it suffices to show this leads to
a contradiction. We consider a branch b through 7’ so there must be at
least one model M € U which satisfies all decisions along the branch. Since
the decision tree lead to an elementary contradiction it must be because
one of the clauses in St is unsatisfied. This unsatisfied clause much be
a clause which is a weakening of a clause of the form {f(3) = c1, f(5) =
€2, ..., f(8) = cp} since all other types of clauses are satisfied by any model
M € U. Thus the branch b must involve the conjunction A of decisions
f(3) # c1, f(38) # ca,-.., f(3) # ¢, as well as possible some other decisions
(here 5 denote a < w-tuple of constants si,82,...,8, € {c1,¢2,...,¢cn}).
According to the pigeonhole principle there must be at least one constant
d € {ci, iy -5 Ciys Ciy iy }osuch that ¢ & {s1,2,...,5,}. Since none of
the constants {c;,, ¢i,, ..., ¢i,,Ci,,, } appear in an atomic formula associated
to ‘free choice’ node along b, ¢/ does not appear in any atomic formula
associated to ‘free choice’ node along b. Thus the decision f(3) # ¢ was not
made as a free choice and thus must have been a forced answer. Thus all
models M € U which satisfies the conjunction A must have f(5) # ¢’. This
leads to a contradiction. To see this let M € U be a model which satisfies
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the conjunction A. Consider the model M’ which is identical to M except
' is interpreted such that f(5) = ¢’ (since ¢’ does not appears in 3 there is
such a model). We claim that:

Claim C: M’ satisfies the conjunction A.

Proof of claim C: If M’ does not satisfy the conjunction A there exists
a (negation of) basic atomic sentence R(¢) which is in the conjunct A, but
which is not satisfied by M'. Consider the first node w along the branch b
where (the negation of) the basic atomic sentence in the conjunction A not
is satisfied by M'. Since M and M’ are identical except for the intepretation
of ¢’ the sentence R(¢) must involve the constant ¢/. Let me explain this
point in details. For each vector ¢ of constants from {ci,co,...,¢c,} \ {c'},
the model M’ is constructed such that M = R(¢) if and only if M’ = R(C).
Since the node w has M = R(¢) while M’ E —R(¢) the constant ¢’ must
appear at least once in the vector ¢ which is what I wanted to explain.

Since we choose ¢’ such that it does not appear in any atomic formula
associated to ‘free choice’ node along b, the question ‘R(¢)’ cannot have
been left open for the prover. But then all models M € U which satisfies
the conjunctions in A, must satisfy R(¢). Thus M as well as M' satisfy
R(C) i.e. M E R(¢) and M' = R(¢) which is a contradiction. Thus we have
proved that M’ satisfies the conjuction A. This completes the proof of claim
C and claim B.

We also have argued that all models M’ € U which satisfies the conjunction
A must have f(8) # . This contradics the fact that M’ = f(3) = ¢’ and
shows that our assumption that the prover could win against the adversary’s
strategy fails. This proves claim A and thus completes the proof of the
lemma. O

Combining lemma 4.1 and lemma 4.2 we get:

Lemma 4.3 Assume there is a model M of T which contain more than
n elements. Then each tree resolution refutation T of St, contains, as

a subtree T', the binary subtree which has hight (n — k™) /max (k5,1 +

on/max(ki 1+kp") Consequently each tree resolution

(K 1+kEm)

k) and size at least
refutation of St must have size > gn/max

Corollary 4.4 In theorem 3.2 (1) holds if T has an infinite model or if T
has a model of size n' > n.
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5 The polynomial size upper bound

An example:

Consider the inconsistent theory 1" which consists of the two axioms:

(1) Vz3IyVz R(z,y,z)
(2) FzVy3z ~R(z,y,z)

To illustrate the idea behind the general upper bound, we show that asymp-
totically (i.e when n tends to infinity) S, has polynomial size (in n) tree-
resolution refutations.

The language L of the theory T' contains a single ternary relation sym-
bol R as its only primitive non-logic symbol. We want to translate the
fact that T has no models of size n into an unsatisfiability problem in
propositional logic. First we skolemize T and get (1a) R(z, f(z),z) and
(2a) -R(c,y,9(y))-

Then we rewrite these two formulas as disjunctions of basic atomic for-
mulas and negations of basic atomic formulas: (1b) R(z,y,z)V—f(z) =y
and (2b) -R(z,y,2)V-c=zV g(y) = 2.

Next add new constants c1,ca,...c, to L. Substitute z,y and z by each
combination of the n3 combinations of c¢i,cj and c¢;. Finally inclose the
resulting basic atomic formulas in corner quotes:

(1c) [R(ecircjer)] V =[f(ci) = ¢l
(2¢) —[R(circj,ee)] V mle=c¢] V =[g(cj) = ck]

After adding clauses ensuring functions are well behaved (the clauses in

I'<y) we get (letting rij; := [R(c;, ¢j, cr), fij == [f(ei) = ¢, 9i5 := [g(ei) =
¢j| and d; := [c = ¢;|) the system St,:

(1e)  {rijm,—fi;}, idk€{1,2,...,n}
(2¢) {=rijr,~diy g}, iydk €{1,2,...,n}
(i) {fir, fizy-- s fin}, 1€{1,2,...,n}
(i) {gi,9i2,---,9in}, 1€{1,2,...,n}
(i) {~fij,~fi}, 7 #k,4,5.k €{1,2,...,n}
(v) {-gij, gk}, J#kvi,g5k€{1,2,...,n}
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We know that St is unsatisfiable (lemma 3.1 + the fact that 7' has no
model of size n). Hence S, has a tree-resolution refutation. We want to
show that there exists a polynomial p such that St for each n has a tree
refutation 7, containing less than < p(n) symbols.

Consider 1a and 2a again. The axioms are inconsistent so according
to Herbrands Theorem (see for example [24] or [10] for more details) there
is a unification (namely z — ¢,y — f(c),z — g(f(c))) with makes the
clauses {R(z, f(z),2)} and {-R(c,y,9(y))} contradictory in the sense of
propositional logic. The substitutions given by the unification leads to the
refutation R:

{=R(c, f(c),g(£ ()} {R(c, f(c),9(F(c)}
0

This refutation serves as a starting point for constructing a refutation 7, of
St,n- Replace R with R':

{-R(z,y, )} US {R(z,y,2)}US
S

where S = {-¢ = z,~f(z) = y,g(y) = z}. For each interpretation of c
(given by d; := [c = ¢;]) we select an interpretation of f(c) (given by f;; :=
[f(ci) = ¢j]) and for each of these interpretations we select an interpretation
of g(f(c)) (given by g;r := [g(cj) = cx]). We now build a decision tree
T which refute St as follows. First, we build a decision tree 7' where
each branch either: (i) define an interpretation of ¢, f(c), and g(f(c)) i.e.
satisfy d; A fij N g, or (ii) Contain decisions which falsify a clause in
(i) or (ii). Second, we extend the decision tree 7" as follows: In each leaf
where the terms ¢, f(c) and g(f(c)) are interpreted we extend the decision
tree by adding a (constant size) decision tree. The decision tree is got by
substituting = ¢;,y = ¢; and z = ¢, into the resolution refutation R’ and
turning it into a decision tree. In other words in each leaf where d; A fi; A gji
holds we ask the question ‘r;;;x?’. This leads to the following modification
of R:

d; N\ fij N gjk
rijk N di N fij N gjk —riig N di N fij N gk
Each decision (r;; or —r;j;) leads to a violation of a clause in SAT7,.

As already remarked we can turn the decition tree into a tree-resolution
refutation which refuses SAT7 . The tree has 2n° + 2n + 1 leaves and thus
contain 413 +4n+1 clauses. Notice that the clauses in (iii) and (iv) (which
insures that f and g are uni-valued) not are used by the prover and thus
does not appear in the resolution refutation.
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General upper bound:

Now consider any given inconsistent theory 7'. We want to show that there
exists a polynomial p(n) such that we for each n can refute St by a tree-
resolution refutation 7, of size < p(n).

In general the axioms of 7" need not be on prenex normal form. Thus
there might be different ways of skolemizing the theory. Fix a skolemization
and consider the corresponding universal theory 7" as well as the corre-
sponding unsatisfiability problem S7,. Without loss of generality we can
assume that the language of T contains at least one constant ¢ (otherwise
we let one of the new constants ci, ca, ..., ¢, play the role of c).

We present the construction in terms of a dialog between an adversary
and a prover (in the style of section 4). The adversary claims that Sr,
has a satisfying assignment (which is induced by a model of size n). More
specifically the adversary claims that there is a model M with the underly-
ing set {c1,¢2,...,cp} which induce a satisfying assignment for S7,,. The
truth assignment appears by setting each propositional variable of the form
[R(ciy, Cigs - - -, ¢y, )| to true if and only if R(c;,, ¢y, - - -, ¢i, ) holds in M and
by setting each propositional variable of the form [ f(c;, , ¢i, ..., ¢if,) = Cipyy |
to true if and only if f(c;,, ciy, - - -, ¢i,) = iy, holds in M. We want to con-
struct a polynomial size winning strategy for the prover.

We assumed that T is inconsistent. Let 7" denote the skolemized version
of T' (used when obtaining St ) where all axioms are disjunctions. Accord-
ing the the compactness theorem there is a finite subset {11 (Z), 12 (Z) . . . ¥ (Z) }
of the set of axioms for 7", such that the sentence U(Z) := 11 (Z) A2 (Z)A. . .A
() is inconsistent (each 1; is a quantifier free disjunction of (negations of)
basic atomic sentences and each v; has its free variable appear among the
variables & = (x1,%9,...,2x)). According to the completeness theorem the
sentence 3% —U(Z) is provable in logic. Thus using a standard result from
proof theory there exist terms #;; such that =¥(f;) V =¥ (f3) V... V ~U(E,)
(where #; := (t;1,ti0, ..., 1)) is logically valid. This result (which together
with an explecit construction is essentially the weak version of Herbrand’s
theorem discussed in [10]) is an easy consequence of Gentzen’s Haupsatz,
but it can also be derived purely model-theoretically (see for example [23]
or [20]).

Let U denote the (finite) collection of all closed terms and sub-terms
of the terms ¢;;. In the example ¥(z,y,2) = (R(z,y,2) V ~f(z) = y) A
(-R(z,y,2z) V-c =2z V g(y) = z) was the inconsistent sentence. In general
when a sentence of the form 3z, y, z ~U(z,y, z) is logically valid, there exist
a number k (some times refered to as the Herbrand Complexity) and closed
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terms tj1,t52,t53, j = 1,2,...,k such that szl —W(t)1,t52,t;3) is logi-
cally valid. In the example we can choose k = 1 since =¥U(c, f(c),g(f(c)))
(ie. (R(c, f(c),g9(f(c))) V =f(c) = [fl(e)) A (=R(c, f(c),g(f(c))) V —c =
cVg(f(e)) = g(f(c)))) is logically valid. Notice that U = {c, f(c), 9(f(c))}
in the example.

The first part of the provers strategy is to force the adversary to give
an interpretation of each closed term (and to each closed sub-term) which
appears in U. The terms in U might be nested while the prover can only
ask basic atomic questions. Thus if the prover want to make progress she
must proceed in a systematic fashion. We define the rank of a closed term
inductively: Constants have rank 1. In general if ¢1, %o, ..., %; each has rank
< w and if f is a k-ary function symbol, then the term f(¢1,%2,...,%) has
rank v + 1. The first step in the provers strategy is to force the adversary
to give interpretations of all constants in U (please do not confuse these
constants with the ¢;’s). If the adversary refuse to give a given constant an
interpretation he will eventually violate a clause of the form {[d = ¢1], [d =
c2l,...,[d=cyl}. Let di,ds,...,d, denote all constants in U. The prover
forces the adversary to interpret these as elements in {c1,c2,...,c,}. This
is done by asking each question [d; = ¢;] where i = 1,2,...,v and j =
1,2,...,n. Thus after having asked at most v X n questions the prover
have obtained values for each constant in U. Now assume that the prover
already have forced the adversary to give an interpretation of each terms in
U which has rank < v. If this includes all (finitely many) terms in U we
are done. If there are terms (in U) which are still not interpreted, there
must be some terms of rank v 4+ 1. The prover force the adversary to select
interpretations for each of these terms. The prover can not enquire directly
about such a term. Let f(¢1,t2...,tx) denote an arbitrary term of rank
v + 1. The prover want to force the adversary to give the term a value
(in {c1,¢2,...,¢,}). The adversary has already given us interpretations of
ti,to...,tg. Say these are s1,s9,...,s; € {c1,¢2,...,¢,}. Then the prover
repeat asking questions [f(si,s2,...,8k) = ¢j],7 = 1,2,...,n until the
adversary eventually accepts a value (if he continue to refuse to give a value,
he will eventually violate the clause {f(5) = ¢1, f(3) = c2,..., f(5) =cn} €
St.)- The prover repeat this procedure until each term (€ U) of rank v+ 1
has been given an interpretation. Eventually, the adversary either makes an
elementary contradiction, or is forced to give an interpretation of each of
the finitely many terms in U.

The adversary is now in great trouble!! He is about to be caught in
his net of lies! This will happen within a constant number (i.e. a number
independent of n) carefully selected questions.
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The prover has forced the adversary to assign values to each term in U.
Each (possibly nested) term t;; has been assigned a value s;; € {c1,¢2,...,¢n}.
Since the sentence ~W(t1) V ~¥(f3) V...V ~¥(t,) is logically valid, the sen-
tence © := U (s])V-U($3)V...VU(s,) (where §; := (81, 8i2,-- -, Sik))
is also logically valid (still in the sense of predicate logic).

Notice that © is build up from basic atomic sentences. We claim © is
logically valid if each atomic sentence in © is inclosed in corner quotes. Or
in other words we claim that © is logically valid when viewed as a formula in
propositional logic. This claim is essentially the weak version of Herbrands
Theorem discussed in [10]. The claim also follows directly: Assume there is
a truth assignment which makes © false. Each basic atomic sentence in ©
has assigned the value 0 or 1. Now (using the construction we used in the
proof of lemma 3.1) we can construct a model M with universe {1,2,...,n}
such that © fails in M. This is a contradiction since O is logically valid in
the sense for predicate logic.

Since the resolution proof system is complete, there must be a tree resolu-
tion refutation R of U($1)AP($3)A...A¥(s,) with atomic sentences in corner
quotes (in the example the refutation R was given by mﬁ%ﬂ—}) Equiva-
lently there is a decision tree 7' which querring propositional variables leads
to a conjunctions of literals which violates a clause i.e. violates W(s;) for
some j = 1,2,...,v. But the clauses ¥(sj) all appears in St,(= Srv,n) so
the decision 7"’ produce a violation of a clause in St,n- Notice that the size
of 7" is independent of n.

Clearly we can build a decision tree from the provers strategy. To show
that this decision tree can be bounded by a fixed polynomial, it suffices
(this was also noticed in [28]) to show that the number of different possible
games (when the adversary varies his strategies) can be bound by a fixed
polynomial. Let u denote the number of different terms in U. The adversary
have n possible choices of assignment for each term ¢ € U. Besides that the
adversary has the freedom to select a path through R’. Thus the number of
possible games is bound by An* for some A > 0. Thus we have shown:

Lemma 5.1 Let T be an inconsistent theory. Consider St (with respect
to some fized skolemization T'). If T' has a refutation involving a set U of
terms and sub-terms, then St., has a tree-refutation of size O(nlU').

Now consider a theory T which has no infinite models. According to the
compactness theorem, 7' cannot have arbitrary large finite models (for de-
tails see any standard text book in model theory e.g. [20]). Assume T has
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no models of size > ng. Then T'UT'>, is inconsistent for each n > ng. By
applying lemma 5.1 to T U T'>,, we get:

Corollary 5.2 In theorem 3.2, (2) holds if T has no infinite model.

Combining Lemma, 4.3, Corollary 4.4, Lemma 5.1 and Corollary 5.2 we get
Theorem 3.2.

Proof of Theorem 3.5: Let 6 denote a first order sentence which among
its relational symbols contain a unary relation symbol U. Assume that the
set {a € M : M |=U(a)} is infinite for each model M of §. One such choice
of 6 could be the conjunction of U(1), U(z) — U(Sz), -(S(z) = 1) and
Sr=8y > z=uy.

Let 1 be an arbitary universal relational sentence which holds in all
models of size < ng, but fails in all models of size > ng + 1. Assume that
has no relation symbols in common with 6.

Consider the universal first order sentences 7y where the universal quan-
tifiers are bounded by U (i.e. each quantifier Vz appears in the context
Vz(U(z) = ...).

We assumed 7 is satisfiable in some model of size < ng, but is unsatisfied
in all models of size ng+ 1. Clearly 1 := 0 Any is unsatisfiable for any n. We
claim the sequence Sy, ,, require tree-resolution refutations of size Q(n™°). To
see this let the adversary choose a subset Uc {1,2,...,n} of size ngy, and let
the adversary choose a satisfying assignment such that ny is satisfied (when
U has size < ng). The adversary makes sure that the elements satisfying
U are given interpretations as elements in . When adversery is forced
to resign (i.e. loose), prover must have forced adversary to claim that at
least ng + 1 concrete elements are in U. Thus at some node v (along the
branch b) exactly ng elements in U are given interpretations as elements in
U. In other words each element in U/ (and no other element) has be given an
interpretation as an element b for which U(b) holds. Thus two different sets
U (each containing ng elements) produce different (incompatible) branches.
Consequently the provers decision tree must contain at least (nno) = Q(n™°)
leafs. Thus Sy ,, require tree refutations of size Q(n"°).

Since there is no total recursive function which given the Gédel number
‘n’ of a universal relational sentence 7, outputs ng := f(‘n’) such that 7 has
no model of size > ng, there is no total recursive function which given input
‘p', produce an upper bound on the degree ny needed to refuse Sy j,. O
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6 Related Results

Assume that v is a conjunction of IIy sentences, i.e. each sentence in the
conjunction is of the form VZ3y§ ©(x,y) where O is quantifier-free. If © can
be written as a single clause we say VZ3y ©(z,y) is a special Iy sentence.
It turns out that any conjunction of special I, sentences can be translated
into a sequence of (polynomially bounded) satisfiability problems.

Example: Let 9 be the conjunction of

Vz,y,z ~(z <y)V-(y < 2) V(z < 2) and Vz =(z < z) and VzIy (z < y).
The sentence 9 is saying that < defined a partial ordering with no minimal
elements.

The sentence is on a special form which allows us to translate it into
propositional logic without introducing Skolem functions. More specifically
we can write the sentence as the clauses Wpqp, , consisting of {74, 7k, Tik }
where 1,5,k € {1,2,...,n} are distinct, {r;;} where i € {1,2,...,n} and
{ri1,mi2,...,Tin} where i € {1,2,...,n}.

Had we used our standard translation using Skolem functions we would
have got the same clauses except that the clauses {r;j1,rio,...,rin} would
have been ‘skolemised’ and replaced by the clauses { f;i, 7i; }, {fit, fizs-- - fin}
and {fi;, fi} where j # k.

The essential difference between the two translations is that our previous
translation produce the clauses { ﬁj, fix} where j # k, while these clauses are
absent in the ‘special’ translation. It is clear that the ‘special’ translation is
at least as difficult to refute as the usual translation. Hence, since there are
infinite models of v, we know that Sy, require tree resolution refutations
of size 2/2 and thus the same lower bound applies to Yhrop,n- e
The above translation works for any conjunction I' of special IIs-sentences.
The resulting clauses are equivalent to the system Sr, if we remove the
clauses ensuring that the Skolem functions defines unique values (the clauses
(iv),(v) and (vi) in the example of DLO).

Notice however that these axioms not are used in our proof of our poly-
nomial upper bound. To see this notice that if the adversary is allowed to
interpret each closed term in more than one way, the provers strategy will
still work. This give a heuristic explanation why the polynomial upper in
Theorem 3.2 remain valid.

An extended translation of a first order sentence 1) in predicate logic,
consists of a system Sy , of clauses, which appears by first skolemising 1)
(so it becomes a conjunction of universal sentences and possibly also some
special II-sentences), and then translating the resulting conjunction of sen-
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tences into propositional logic (in the obvious fashion already described).
Since a first order sentence has many skolemisations, usually a first order
sentence 1 has many extended translations into predicate logic. The upper
bound can easily be modified (there is essentially nothing to do, since its
the same application of Herbrand Theorem we need) so we get:

Theorem 6.1 Let 1 be a first order sentence and let Sy, denote any ex-
tended translation of v into clausal form. Then Sy, is satisfiable if and
only if 1 has a model of size n. Further more either Sy, have polynomial
size tree resolution refutations (for all sufficiently large m) or there exists
a constant X > 0 such that Sy, have no tree resolution refutation of size
< 22" for any n.

The second case holds if and only if ¥ has an infinite model.

This version of the main theorem, shows that the complexity gap is robust
with respect to chosen method of translation.

Finally it should be pointed out that there is one kind of translations
which is not covered by our main theorem. This translation arise if one
consider sentences 9 in a first order language L = L(<,...) which contains
a relation symbol < which defines a total ordering. In our approach we treat
< as any other relation symbol. It is however possible to treat < as a build-in
relation symbol, and let [¢; < ¢j] = 1if¢ < jand let [¢; < ¢;] = 0 otherwise.
The complexity gap theorem does not cover this kind of translation. This
explain why the complexity theorem does not apply directly to for example
the mutilated chess board problem which was studied in [15].

7 Further perspectives

Up to this point uniform sequences St,, of unsatisfiability problems have
been considered. Notice however that our polynomial upper bound was
achieved by highly uniform families of tree-refutations. This raises a cru-
cial question. Given a propositional proof system P. When does P have
the property that uniformly generated (i.e. S,-generated) sequences of tau-
tologies which have short P-proofs also have short uniformly (used here in
an informal sense) generated P-proofs? In this paper we have seen that
tree-resolution has this property.

Let Tiota1 denote the mathematical theory which is axiomatised by the
class of existential sentences 1 that are valid in each finite model (the sen-
tences are written in an infinite language with an arbitrary number of func-
tion and relation symbols of each arity). This theory consists of the class
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of first order formulas which hold in all finite models. Notice that T}y iS
a well-defined theory because the property of being valid in all finite mod-
els is closed under logical deduction. The list of sentences in Tigia forms
a complete co-recursively enumerable set. Thus T}y, is not recursively ax-
iomatisable.

Given a propositional proof system P we let Tp C Ty, denote the
collection of existential sentences 1 € Tioa for which the sequence S—y 5,
has polynomial size (or for example nlog(n)o(l)—size) P-refutations.

To show a super-polynomial lower bound for the propositional system P
it suffices to show that Tp # Tita1- In this paper we showed that when P is
tree-resolution then 7T'p is the minimal theory i.e. just predicate logic. For
tree-resolution Tp is recursively axiomatisable (axiomatised by the empty
set (1) of axioms over predicate logic). In general for stronger propositional
proof systems, Tp need not be recursively axiomatisable. It is a mistake
to equate Tp with TAg(a) (resp. V! or Ui) when P is polynomial size
bounded depth Frege proofs (resp. polynomial size extended Frege proofs
or n1o8()°(1)_gize Frege proofs). A detailed description of these systems can
be found in [21]. The theory Tp is axiomatised by purely existential axioms
and thus it behaves differently from the theories TAg(c), Vit or U} which
are all recursively axiomatisable by universal axioms.

It is possible to formulate various interesting conjectures and questions
concerning general properties of the axiomatisations of Tp. Is Tp is re-
cursively axiomatisable when P is dag-resolution or when P is the Frege
system? I conjecture that Tp is not recursively axiomatisable when P is the
extended Frege system. In general it seems safe to conjecture that:

Conjecture 7.1 For any propositional proof system Tp # Tiotal-

Using Cook’s and Reckhow’s reformulation of the NP # co-NP question [14]
we get:

Proposition 7.2 The conjecture implies NP # co-NP.

The main aim in this section is to define the theory Tp (where P is an
arbitrary propositional proof system). Theorem 3.2 can now be stated as
follows:

Theorem 7.3 Let P denote tree-resolution and let Tp(f) C Tiota1 denote
the theory of principles 1 € Tiota1 which have f(n)-size tree proofs (refu-
tations). The theory Tp(f) is well-defined as well as well-behaved. Fur-
thermore Tp(f) is the same theory (namely predicate logic) for any super-
polynomial but sub-exponential function f(n).
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8 General considerations

Consider the theory Tp(f) defined in the previous section. When the growth
rate of f changes, the theory Tp(f) might, of course, also change. The
question is whether this change happens in a continuous manner or - as we
have shown for tree-resolution - happens in a jump.

Let us briefly compare our translation method with another impor-
tant theoretical method for generating satisfiability problems. This method
(which is outside the scope of this paper) is to consider randomly cho-
sen 3-satisfiability problems and to consider the case where the ratio ¢
of clauses and variables is kept constant, while the number of variables
tends to infinity. Experiments suggest that there is a phase transition near
€ = Cphase =~ 4.258... [13]. Experimentally it is found that virtually all
problems with ¢ > cppqese are unsatisfiable, while virtually all problems with
¢ < Cphase are satisfiable. Given a deductive powerful propositional system
P (like the Extended Frege system) it seems reasonable to expect that there
exists some constant ¢,y such that with probability converging to 1 any
randomly chosen 3-sat problem with ratio ¢’ > ¢poly have polynomial size
refutations. Assume also that a randomly chosen problem with ¢ = cppyse
with probability converging to 1 requires P-refutations of a size bounded
from below by some exponential expression. If Hardy’s remark (which we
discussed in the introduction) applies to this situation, for each ¢ (with
Cphase < € < Cpoly) there should be a logarithmic-exponential expression es-
timating the optimal size of P refutations. Any such expression, (by which
P(n)exp(An/(c — cpoly)) for cppase < ¢ < cpoly is just one of infinitely many
possibilities) must have a complexity gap at some ¢. So (assuming that
Hardy’s remark applies) there exists at least one phase transition i.e. con-
stant cp such that: For cppese < ¢ < cp a randomly chosen 3SAT problem
almost certainly only has long P-refutations (of size bounded from below by
a concrete exponential expression). For cp < ¢ there almost certainly exists
a short (bound from above with sub-exponential logarithmic-exponential
expression) P-refutation. In such a case, where the threshold cp is sharp,
it seems fair to say that a complexity gap occurs. Of course the situation
could be very complicated with various phase transitions and thresholds
corresponding to different complexity classes etc.

These considerations touches a fundamental question. As already sug-
gested it seems to be an empirical fact that only a relatively small num-
ber of complexities appears in practice (like (1), 6(y/log(n)/loglog(n)),
8(log(n)/loglog(n)), 8(n), 8(nlogn), 8(n?), 2”6(1))). These complexities can
be all given by logarithmic-exponential expressions. Theoretically, virtually
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any complexity is possible, so why do so the same complexities arise again
and again? This is striking because the number of different problems is sig-
nificantly more extensive than the above small finite list. One feature of real
world computational problems is that they, in some sense, involve computa-
tional problems which are the same except for size. It would, for example,
be highly unnatural to consider a computational problem where certain lists
have to be sorted for some values of n while certain bin-packing problems
have to be solved for other values of n. Uniformity is clearly a feature of
real world problems as we meet them in theoretical computer science.

I hope the reader will forgive these pure speculations, but if Hardy’s
remark is widely valid then we will expect that any uniformly (here used
informally) given computational problem will have a worst case complexity
which belongs to a list of discrete possibilities (all given by logarithmic-
exponential expressions). Perhaps all of these are the shadows of a master
theorem. A Theorem which surely must be far beoynd current techniques
and which states that a large class of uniform complexity questions can only
have certain discrete answers. Or perhaps there is no such theorem and the
phenomena only reflect the limitations in our methods.

In the setting of propositional logic perhaps Tp(f) always has a discrete
set of of jumps. Clearly (using Cook’s and Reckhow’s result [14]) if there is
a complexity gap for any propositional system P we must have NP # co-NP.

For a given propositional system P an interesting project is to give cri-
teria for when a proposition ¥ leads to unsatisfiability problems Sy , which
require super polynomial size P-refutations. Consider for example the NS-
proof system (over fields of characteristic 0). This is a very interesting propo-
sitional proof system which has been studied intensively in recent years. The
system was first introduced in [4] and has many nice features [12]. We fin-
ish the paper by showing that the Nullstellensatz proof system proves the
following version of the pigeonhole principle.

For fixed n € N consider the class Poly,, of polynomials in the variables x;;

where i € {0,1,2,...,n} and j € {1,2,...,n}.
Consider the following polynomial equations:

( > xij)—i—a:ii—l:Ofori:1,2,...,n, (

J=L5#1 J
n

( > acji)+a:ii—|—:c0i—1:0fori:1,2,...,n.

i=Li#i

These equations have no 0/1-solution as such a solution would define a

bijection from {0,1,...,n} onto {1,2,...,n}. Actually we show:

CEOj) —1=0.

n n
=1
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Proposition 8.1 The equations do not have any solutions over any ring.

Proof: Notice that

n n n n n
DY i) tmitea—1)=Y (( Y @) +zi—1)—() zo5)-1=1
i=1 j=1,j#i i=1 j=1,j#i Jj=1

and that 1 thus can be written as a linear combination of the polynomials
which appear in the polynomial equations. O

The tautologies for the usual pigeonhole principle is an extension of the
above equations. Besides the equations above, they include:

a:?j—a:ijzo, where i € {0,1,2,...,n} and j € {1,2,...,n}.
zijzip = 0 for i € {0,1,2,...,n} and j,k € {1,2,...,n} with j # k.
zjixzg; =0 for i € {1,2,...,n} and j,k € {0,1,2,...,n} with j # k.

It is well known that the bijective pigeonhole principle requires exponential
size bounded depth Frege proofs [6]. Thus we have:

Theorem 8.2 There exists a sequence of tautologies which has linear size
Nullstellensatz proofs, but requires exponential size bounded depth Frege Proofs.

This shows that the strength of the NS-proof system is incompatible to
Bounded Depth Frege. It also shows that the complexity gap for the NS-
proof system does not take place at the same place as for tree-resolution (i.e.
Trr C Tns with Trr # Tns)- An exact characterisation of Txg, i.e. an exact
characterisation of the class of 1)’s for which Sy, requires polynomial size
NS-refutations is open. Is the theory Tng recursively axiomatisable? Also
the size of the complexity jump for the NS-proof system is open although
some special cases has been settled [35]. The same questions are open for
the bounded depth Frege proof system. Does the cutting plane propositional
proof system have a complexity gap? Does unrestricted resolution? Does
the unrestricted resolution have a complexity gap from polynomial to expo-
nential? What is the characterisation of first order sentences 1 for which
Sy,n has polynomial size resolution proofs (refutations)?
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